
Vladimir Kovalenko

Beyond Code
Towards Intelligent Collaboration Tools

BENEVOL 2021
08.12.2021

Vladimir Kovalenko

Beyond Code
Towards Intelligent Collaboration Tools

BENEVOL 2021
08.12.2021

Introduce myself

Software engineers mostly code.

Let me start with a statement: 
Software engineers mostly code.

 
Do you agree? I don’t. Let me try to disprove this statement. 
 

Let’s ask Google.

If we look up “software engineer at work”, we see lots of code and little beyond that in their screens.  
 

Of course, one million web pages cannot be wrong. It’s not so easy to disprove this. 
At this point, we could stop trying and call it a day, but we’re scientists…

…So let’s try again.

We are going to find a few interesting articles, over at least three last decades, reporting on studies aimed at figuring out what the developers actually do at work.

Meyer, Andre, et al. "Today was a good day: The daily life of software developers." IEEE Transactions on Software Engineering (2019, preprint).

Let’s take a quick look at some of the results from these papers. This table from Andre Meyer’s work presents the distribution of activities reported by almost 6K
professional developers.  
 

Meyer, Andre, et al. "Today was a good day: The daily life of software developers." IEEE Transactions on Software Engineering (2019, preprint).

Less than half of time is spent on code-related activities.

If we take a close look, we see that less that half of all time is dedicated to code-related activities. 
 
A few other similar studies, that we will not dive deep into to save time, present a similar overall picture.  
 
 

OK, but what else do developers do?

They mostly collaborate.

 
This includes communicating in meetings and emails and reviewing code. Some other things not explicitly reflected in this example include chatting to colleagues in
messenger workspaces, managing the issue tracker, and other things like that.

Software engineers mostly code.

Now let’s correct the statement a bit.

Software engineers mostly code.

Also, they exchange information.

And extend it.

In the modern world, all these collaborative activities are supported by dedicated tools, that are often tailored specifically to software engineering.

Collaboration tools

There are issue trackers and project management tools like YouTrack or Jira…

Collaboration tools

There are code review tools like Gerrit, Upsource, or Crucible…

Collaboration tools

There are messenger workspaces and meeting software like Slack, Discord, or Google Meet

Collaboration tools

Also, there are integrated solutions, incorporating the capabilities of several other tools or classes of tools, such as GitHub, JetBrains Space, or GitLab.  
 
The list is of course not complete, but it should give a general idea: there are many dedicated collaboration tools in use today.

Collaboration tools

Let’s take a look at them from a different perspective: how do they compare with another class of mainstream developer tools?

Collaboration tools vs IDEs

I mean the IDEs.

Smart

IDEs are really smart tools. They save thousands and thousands of human-hours of work every day by simplifying complex operations like refactorings, help ensure code
quality through static analysis, and support developers in working with myriads of other tools and frameworks. 
 
To support all these things, IDEs build and maintain complex representations of the code and its dependencies and efficiently operate with them. They are indeed some
of the most complex pieces of software out there.

SmartNot so smart

In contrast, the collaboration tools of today are not that smart.  
To exaggerate a bit, at a very high level, they are not much different from bulletin board engines.  
 
Of course, they are also beautiful and complex pieces of software, designed to be reliable, distributed, and fast, and they also do help their users a lot, and mostly have
brilliantly designed user experience.  
 
All of this brings me to this really important point: 
 
However, while IDEs deeply analyse the medium they are designed to work with — I mostly mean code — the collaboration tools do not really deeply analyse the data
they operate with.

SmartCould be smarter!

Collaboration tools in software engineering could be smarter.

SmartCould be smarter!
And it’s us researchers who could make it happen.

And it’s us researchers who could make it happen.  

Collaboration tools could be smarter!

Let me try to amplify this message and try to convince you that we should really pay more attention to collaboration tools.

Argument 1: we are biased towards coding

NOT

code-centric:

Papers accepted at ICSE 2020 (top of the list)

Not so long ago, while thinking about this difference between IDEs and collaboration tools I’ve just talked about, I’ve tried to kind of prove myself wrong and collect some
numbers. 
I opened the then-recent list of papers accepted to ICSE, and tried to count the papers that are focused on code and those that are not. In the top of the list, two of three
papers were about code in one way or another.

Argument 1: we are biased towards coding

Papers accepted at ICSE 2020 (top of the list)

ICSE 2020

Knowing a bit about statistics, I took it a bit further and quickly labeled all of the papers by just the title and the abstract.  
 
The ratio was about the same: most of the papers are dedicated to code in one way or another.

Argument 1: we are biased towards coding

Papers accepted at ICSE 2020 (top of the list)

ASE 2020

I did the same for ASE, with similar results

Argument 1: we are biased towards coding

Papers accepted at ICSE 2020 (top of the list)

MSR 2020

And for MSR. Same.

 
For some reason, it feels like the SE research community considers code — and its analysis and manipulation — more important than activities besides coding.

Argument 2: we have more and more data

Another argument is, the tools are becoming more integrated. A typical situation is, a team tracks issues in Jira, chats in Slack, does code reviews in Crucible, also hosts
code in a dedicated service, runs CI builds in yet another dedicated service… 
Teams often have to maintain a whole zoo of tools, and each of those tools is normally isolated from others. If we want to share the data between tools, the amount of
integration work grows quadratically as the number of tools grows. 

Argument 2: we have more and more data

Narrow-scope tools Integrated tools

and integrated tools

Lately, more and more of these activities have been supported by what I call platform tools, such as JetBrains Space or Github. The cool part here is, we can use data
from all collaborative activities in one context basically for free!  
This enables us to benefit from synergy between more and more data types, so more and more data-driven enhancements are possible. 
 
Moreover, modern collaboration tools are more platforms than tools: they are very friendly to extension.

How do we improve collaboration tools?

• Observability

• Decision-making support

• Taming the chaos

OK, now that you are hopefully convinced that collaboration tools are worth special attention, let me share just a few broad directions of how exactly we could make the
collaboration tools of tomorrow smarter and more helpful. 
 
Here are a few broad categories of approaches: [list] 
 
Now let’s look into each of these categories.

Observability

Well, observability is a relatively straightforward idea. Development processes are complex, teams could be huge, it might be hard to make sense of what is going on
— tools could help.

Observability

One obvious example of an observability feature is the Github’s punchcard. With just a single glance, one can make sense of the user’s activity through the year. While
this is no rocket science, extracting this information would otherwise require careful processing of all repositories, so it certainly helps with a bird’s eye view.

Observability

“The basic illustration concepts of CodeCity” by AryanMasoud; https://commons.wikimedia.org/wiki/File:City_metaphor.png; CC BY-SA 3.0

A more interesting example is the CodeCity concept, a rather famous one. If we visualise not just aggregated activity, but code attributes, this gives us a bird’s eye view
over the codebase, which could be really helpful with making decisions — for example, if there are any monster classes to refactor.

 
The point that I’d like to hightlight, we don’t really have the major collaboration tools provide that much of a bird’s eye view or other observability related to the
engineering artifacts — and other important things, such as team communication.  
Some tools have some reports, but they are normally really basic. Project management software is a bit ahead here with Gantt charts and alike, but that’s pretty much it. 
Dedicated tools like CodeScene by Adam Tornhill and his team are still very niche instruments.  
 
In our team, we are working to enable top-notch observability not just for technical artifacts, but also for the communication processes and collaborative work. 
This is a really challenging task, I’m going to mention some of the challenges a bit later.

https://commons.wikimedia.org/wiki/File:City_metaphor.png

Decision-making support

Another thing that collaboration tools could be better at, is provide decision-making support.

Decision-making support: recommender systems (short-term)

My favourite example here is code reviewer recommendation, I’ve worked on this problem a lot during my PhD and even before that. Your code review tool knows about
all your contributions to the project, so it could help find the expert for a new review. Luckily, it’s already a really mainstream feature. 
 
There are also other contexts for recommenders in collaboration tools: for example, automatic bug assignment algorithms are quite similar to reviewer recommendation,
and are also potentially useful in their own way. 
 
However, there are some issues: if we rely too much on such recommenders, it’s mostly the experts who are going to gain more expertise, so such recommenders may
promote inequality in knowledge distribution, which is not good.

Decision-making support: recommender systems (long-term)

But what if we keep the potential risks in mind? There are a couple pretty recent and really nice papers with a different take on reviewer recommendation: they propose
focusing on workload, knowledge distribution, and diversity of the participants besides expertise.  
To my knowledge, this kind of recommenders is yet to make its way into mainstream tools. My colleagues and I are also working in this direction.

Decision-making support: ensuring healthy knowledge distribution

My colleagues and I recently looked at the concept of bus factor — pretty much the measure of knowledge inequality risks — from different fresh angles.  
This work is still under review, so I’ll only touch on a couple main points.

Decision-making support: ensuring healthy knowledge distribution

First, software professionals name unhealthy knowledge distribution as one of the most serious issues with collaborative development. 

Decision-making support: ensuring healthy knowledge distribution

Most of our respondents would find a tool for bus factor calculation useful

 
Second, most of them say that they would love for their tools to let them at least track the knowledge distribution, if not help maintain it.

Third, Additional data (e.g. code review history) provides better BF estimates

Decision-making support: ensuring healthy knowledge distribution

Most of our respondents would find a tool for bus factor calculation useful

Additional data (e.g. code review history) provides better BF estimates than just VCS

Third, Additional data (e.g. code review history) provides better BF estimates than just code history

Taming the chaos: process smells

There is a popular concept of code smells — especially in the BENEVOL audience, I’m sure most of you at least heard about it.  
Some code smells can be located by static analysis and automatically fixed — that’s one of the killer features of modern IDEs.

Taming the chaos: process smells

But what if we go beyond code and search for smells in our processes?  
Our colleagues from Bilkent University recently proposed a taxonomy of smells — potentially unwanted practices or patterns — in the bug tracking process. 
 
This work merely proposes a framework: it doesn’t elaborate on whether the smells are perceived as problems and whether people would like their tools to help avoid
these smells. 

Taming the chaos: process smells

My colleagues and I took a close look at these smells this summer. Many of the smells are perceived as problems indeed; people say they would love for their tools to
detect many of these smells.

Challenges with using collaboration data

I’ve provided a few examples of directions for improvement of the tools. Now let me discuss a few challenges around this.  

Challenges with using collaboration data
1. We don’t know too well what development teams need

One more thing I didn’t mention is that it would also be nice to actually try existing approaches in practice — think defect prediction, automated bug triaging, and such.  
We have more and more opportunities to test them in practice, and that is what we should be doing more. 

This would help us address a big challenge: we researchers don’t really know too well what people really need. There are plenty of different practices, traditions,
methodologies, so many of the approaches are deemed to only be applicable in select scenarios.  

Challenges with using collaboration data
2. Not everyone enjoys their data being processed, even if for their eyes only.

https://twitter.com/Maaikees/status/1432251254357495809

No comment

Challenges with using collaboration data
3. Some do not enjoy it for a reason: there are actually quite a few ethical concerns

https://www.gamesindustry.biz/articles/2021-08-09-xsolla-reportedly-lays-off-up-to-150-people-based-on-big-data

No comment

Collaboration tools could be smarter!
And we could all help here.

ICTL @ JetBrains Research

https:!//research.jetbrains.org/groups/ictl

I’m happy to say that I really practice what I preach. 
I’d like to briefly introduce my team at JetBrains Research.  
We are currently a team of 9, and we have a bunch of projects, mostly practice-oriented, where we seek to do exactly that: enable collaboration tools to better model
their processes and provide assistance.

ICTL @ JetBrains Research

https:!//research.jetbrains.org/groups/ictl

• Analysis of collaboration graphs (technical, social, combined)

• Expert recommendation systems on multimodal data

• Analysis of risky patterns of expertise distribution

• Duplicates search for SE

• Analysis of collaboration networks in the open source community

Here are the most prominent directions of our work. (list)

ICTL @ JetBrains Research

https:!//research.jetbrains.org/groups/ictl

• Analysis of collaboration graphs (technical, social, combined)

• Expert recommendation systems on multimodal data

• Analysis of risky patterns of expertise distribution

• Duplicates search for SE

• Analysis of collaboration networks in the open source community

• We are open to collaboration!

We are open to collaborations with academic researchers!  
Most of all, we like building tangible things, so if you like the idea of converting ideas to prototypes, and trying things in practice, please do reach out. 
 
We are based in Amsterdam, Saint Petersburg, and Moscow, but we mostly work remotely.

Thank you!

vladimir.kovalenko@jetbrains.com

vovak.me

Finally, I’d like to thank you for your time and attention. 
 
Thanks to organizers 
 
Thank you for having me

mailto:vladimir.kovalenko@jetbrains.com
http://vovak.me

Thank you!

vladimir.kovalenko@jetbrains.com

vovak.me

mailto:vladimir.kovalenko@jetbrains.com
http://vovak.me

