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Introduce myself



Software engineers mostly code.
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Let me start with a statement:
Software engineers mostly code.

Do you agree? | don’t. Let me try to disprove this statement.



Q. software engineer at work

RESEARCH

Let’s ask Google.



N
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If we look up “software engineer at work”, we see lots of code and little beyond that in their screens.
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Of course, one million web pages cannot be wrong. It’s not so easy to disprove this.
At this point, we could stop trying and call it a day, but we’re scientists...



Google Scholar

‘ daily life of software engineers| n

®) Articles Case law
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...S0 let’s try again.



Software developers' perceptions of productivity
An examination of software engineering work practices

The better the software development community becomes at creating software, the more > . ' - ’
software the world seems to demand. Although there is a large body of research about This paper presents work practice data of the daily activities of software engineers. Four
measuring and investigating productivity from an organizational point of view, there is a separate studies are p_resented; one looking Io_ngltudmally atan _|nd|V|duaI SE; lwo_\opkmg
paucity of research about how software developers, those at the front-line of software at a software engineering group; and one looking at company-wide tool usage statistics. We

N Iso di the advant: i ideri k practices in designing tools for softy
construction, think about, assess and try to improve their productivity. To investigate software also diseuss te acvaniages In considering Work practices In desighing 100's for so/tware

N N o " engineers, and include some requirements for a tool we have developed as a result of our
developers' perceptions of software development productivity, we conducted two studies: a ... studies.

¥ Y9 Citedby 179 Related articles All 10 versions Y 99 Cited by 397 Related articles All 10 versions

The work life of developers: Activities, switches and perceived productivity l§| Today was a good day: The daily life of software developers

AN Meyer, LE Barton, GC Murphy... - IEEE Transactions ..., 2017 - ieeexplore.ieee.org A Meyer, ET Barr, C Bird... - IEEE Transactions on ..., 2019 - ieeexplore.ieee.org

Many software development organizations strive to enhance the productivity of their What is a good workday for a software developer? What is a typical workday? We seek to
developers. All too often, efforts aimed at improving developer productivity are undertaken answer these two questions to learn how to make good days typical. Concretely, answering
without knowledge about how developers spend their time at work and how it influences ... these questions will help to optimize development processes and select tools that increase ...
Yr YU Cited by 87 Related articles All 6 versions Yr 99 Citedby 19 Related articles All 4 versions
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We are going to find a few interesting articles, over at least three last decades, reporting on studies aimed at figuring out what the developers actually do at work.



Mean and relative time spent on activities on developers’ previous workdays (WD). The left number in a cell indicates the average relative time spent
(in percent) and the right number in a cell the absolute average time spent (in minutes).

All Typical WD | Atypical WD Good WD Bad WD
Activity Category 100% (N=5928) | 64% (N=3750) | 36% (N=2099) | 61% (N=3028) | 39% (N=1970)
pct min pct min pct min pct min pct min

Development-Heavy Activities
Coding (reading or writing code and tests) 15% 84 | 17% 92 | 13% 70 | 18% 96 | 11% 66
Bugfixing (debugging or fixing bugs) 14% 74 | 14% 77 | 12% 68 | 14% 75 | 13% 72
Testing (running tests, performance/smoke testing) 8% 41 8% 4 7% 36 8% 43 7% 38
Specification (working on/with requirements) 4% 20 3% 17 4% 25 4% 20 4% 20
Reviewing code 5% 25 5% 26 4% 23 4% 24 5% 26
Documentation 2% 9 1% 2% 10 2% 9 2% 8
Collaboration-Heavy Activities
Meetings (planned and unplanned) 15% 85 | 15% 17% 90 | 14% 79 | 18% 95
Email 10% 53 | 10% 10% 54 9% 52 | 10% 57
Interruptions (impromptu sync-up meetings) 4% 24 4% 4% 22 4% 22 5% 28
Helping (helping, managing or mentoring people) 5% 26 5% 5% 25 5% 26 5% 28
Networking (maintaining relationships) 2% 10 2% 2% 12 2% 11 2% 10
Other Activities
Learning (honing skills, continuous learning, trainings) 3% 17 3% 14 4% 22 3% 19 3% 16
Administrative tasks 2% 12 2% 11 3% 14 2% 11 3% 15
Breaks (bio break, lunch break) 8% 44 8% 4 8% 8% 8%

Various (e.g. traveling, planning, infrastructure set-up) 3% 21 3% 17 5% 3% 19 4%

Total 9.08 hours 9.12 hours 9.05 hours 9.17 hours 9.15 hours

Meyer, Andre, et al. "Today was a good day: The daily life of software developers." IEEE Transactions on Software Engineering (2019, preprint).
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Let’s take a quick look at some of the results from these papers. This table from Andre Meyer’s work presents the distribution of activities reported by almost 6K
professional developers.



Mean and relative time spent on activities on developers’ previous workdays (WD). The left number in a cell indicates the average relative time spent
(in percent) and the right number in a cell the absolute average time spent (in minutes).

All Typical WD | Atypical WD Good WD Bad WD
Activity Category 100% (N=5928) | 64% (N=3750) | 36% (N=2099) | 61% (N=3028) | 39% (N=1970)
pct min pct min pct min pct min pct min

Development-Heavy Activities
Coding (reading or writing code and tests) 15% 84 | 17% 92 | 13% 70 | 18% 96 | 11% 66
Bugfixing (debugging or fixing bugs) 14% 74 | 14% 77 | 12% 68 | 14% 75 | 13% 72
Testing (running tests, performance/smoke testing) 8% 41 8% 4 7% 36 8% 43 7% 38
Specification (working on/with requirements) 4% 20 3% 17 4% 25 4% 20 4% 20
Reviewing code 5% 25 5% 26 4% 23 4% 24 5% 26
Documentation 2% 9 1% 2% 10 2% 9 2% 8
Collaboration-Heavy Activities
Meetings (planned and unplanned) 15% 85 | 15% 17% 90 | 14% 79 | 18% 95
Email 10% 53 | 10% 10% 54 9% 52 | 10% 57
Interruptions (impromptu sync-up meetings) 4% 24 4% 4% 22 4% 22 5% 28
Helping (helping, managing or mentoring people) 5% 26 5% 5% 25 5% 26 5% 28
Networking (maintaining relationships) 2% 10 2% 2% 12 2% 11 2% 10
Other Activities
Learning (honing skills, continuous learning, trainings) 3% 17 3% 14 4% 22 3% 19 3% 16
Administrative tasks 2% 12 2% 11 3% 14 2% 11 3% 15
Breaks (bio break, lunch break) 8% 44 8% 4 8% 8% 8%

Various (e.g. traveling, planning, infrastructure set-up) 3% 21 3% 17 5% 3% 19 4%

Total 9.08 hours 9.12 hours 9.05 hours 9.17 hours 9.15 hours

Meyer, Andre, et al. "Today was a good day: The daily life of software developers." IEEE Transactions on Software Engineering (2019, preprint).

Less than half of time is spent on code-related activities.
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If we take a close look, we see that less that half of all time is dedicated to code-related activities.

A few other similar studies, that we will not dive deep into to save time, present a similar overall picture.



Mean and relative time spent on activities on developers’ previous workdays (WD). The left number in a cell indicates the average relative time spent
(in percent) and the right number in a cell the absolute average time spent (in minutes).

All Typical WD | Atypical WD Good WD Bad WD
Activity Category 100% (N=5928) | 64% (N=3750) | 36% (N=2099) | 61% (N=3028) | 39% (N=1970)
pct min pct min pct min pct min pct min

Development-Heavy Activities
Coding (reading or writing code and tests) 15% 84 | 17% 92 | 13% 70 | 18% 96 | 11% 66
Bugfixing (debugging or fixing bugs) 14% 74 | 14% 77 | 12% 68 | 14% 75 | 13% 72
Testing (running tests, performance/smoke testing) 8% 41 8% 4 7% 36 8% 43 7% 38
Specification (working on/with requirements) 4% 20 3% 17 4% 25 4% 20 4% 20
Reviewing code 5% 25 5% 26 4% 23 4% 24 5% 26
Documentation 2% 9 1% 2% 10 2% 9 2% 8
Collaboration-Heavy Activities
Meetings (planned and unplanned) 15% 85 | 15% 17% 90 | 14% 79 | 18% 95
Email 10% 53 | 10% 10% 54 9% 52 | 10% 57
Interruptions (impromptu sync-up meetings) 4% 24 4% 4% 22 4% 22 5% 28
Helping (helping, managing or mentoring people) 5% 26 5% 5% 25 5% 26 5% 28
Networking (maintaining relationships) 2% 10 2% 2% 12 2% 11 2% 10
Other Activities
Learning (honing skills, continuous learning, trainings) 3% 17 3% 14 4% 22 3% 19 3% 16
Administrative tasks 2% 12 2% 11 3% 14 2% 11 3% 15
Breaks (bio break, lunch break) 8% 44 8% 4 8% 8% 8%

Various (e.g. traveling, planning, infrastructure set-up) 3% 21 3% 17 5% 3% 19 4%

Total 9.08 hours 9.12 hours 9.05 hours 9.17 hours 9.15 hours
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OK, but what else do developers do?



Mean and relative time spent on activities on developers’ previous workdays (WD). The left number in a cell indicates the average relative time spent
(in percent) and the right number in a cell the absolute average time spent (in minutes).

All Typical WD | Atypical WD Good WD Bad WD
Activity Category 100% (N=5928) | 64% (N=3750) | 36% (N=2099) | 61% (N=3028) | 39% (N=1970)
pct min pct min pct min pct min pct min

Development-Heavy Activities
Coding (reading or writing code and tests) 15% 84 | 17% 92 | 13% 70 | 18% 96 | 11% 66
Bugfixing (debugging or fixing bugs) 14% 74 | 14% 77 | 12% 68 | 14% 75 | 13% 72
Testings(ranitifig wests, Pelivitiunsedsmoke testing) 8% 41 8% 4 7% 36 8% 43 7% 38
Specification (working on/with requiremerits) 4% 20 3% 17 4% 25 4% 20 4% 20
Reviewing code 5% 25 5% 26 4% 23 4% 24 5% 26
Documentation 2% 9 1% 2% 10 2% 9 2% 8
Collaboration-Heavy Activities
Meetings (planned and unplanned) 15% 85 | 15% 17% 90 | 14% 79 | 18% 95
Email 16% 53 | 10% 10% 54 9% 52 | 10% 57
Interruptions (impromptu sync-up meetings) 4% 24 4% 4% 22 4% 22 5% 28
Helping (helping, managing or mentoring people) 5% 26 5% 5% 25 5% 26 5% 28
Networking (maintaining relationships) 2% 10 2% 2% 12 2% 11 2% 10
Tl Activities
Learning (honing sKilis, contunuous learning, trainings) 3% 17 3% 14 4% 22 3% 19 3% 16
Administrative tasks 2% 12 2% 11 3% 14 2% 11 3% 15
Breaks (bio break, lunch break) 8% 44 8% 4 8% 8% 8%

Various (e.g. traveling, planning, infrastructure set-up) 3% 21 3% 17 5% 3% 19 4%

Total 9.08 hours 9.12 hours 9.05 hours 9.17 hours 9.15 hours

N Ee”

P RESEARCH

They mostly collaborate.

This includes communicating in meetings and emails and reviewing code. Some other things not explicitly reflected in this example include chatting to colleagues in
messenger workspaces, managing the issue tracker, and other things like that.



Software engineers maostly code.

Now let’s correct the statement a bit.



Software engineers maostly code.

Also, they exchange information.

And extend it.
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In the modern world, all these collaborative activities are supported by dedicated tools, that are often tailored specifically to software engineering.



Collaboration tools

N Ee”
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There are issue trackers and project management tools like YouTrack or Jira...



Collaboration tools

N Ee”
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There are code review tools like Gerrit, Upsource, or Crucible...



Collaboration tools

=" RESEARCH

There are messenger workspaces and meeting software like Slack, Discord, or Google Meet



Collaboration tools

\E'»
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Also, there are integrated solutions, incorporating the capabilities of several other tools or classes of tools, such as GitHub, JetBrains Space, or GitLab.

The list is of course not complete, but it should give a general idea: there are many dedicated collaboration tools in use today.



Collaboration tools

Let’s take a look at them from a different perspective: how do they compare with another class of mainstream developer tools?



Collaboration tools vs IDEs

| mean the IDEs.



IDEs are really smart tools. They save thousands and thousands of human-hours of work every day by simplifying complex operations like refactorings, help ensure code
quality through static analysis, and support developers in working with myriads of other tools and frameworks.

To support all these things, IDEs build and maintain complex representations of the code and its dependencies and efficiently operate with them. They are indeed some

of the most complex pieces of software out there.



Not so smart

In contrast, the collaboration tools of today are not that smart.
To exaggerate a bit, at a very high level, they are not much different from bulletin board engines.

Of course, they are also beautiful and complex pieces of software, designed to be reliable, distributed, and fast, and they also do help their users a lot, and mostly have
brilliantly designed user experience.

All of this brings me to this really important point:

However, while IDEs deeply analyse the medium they are designed to work with — | mostly mean code — the collaboration tools do not really deeply analyse the data

they operate with.



|
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Could be smarter!

Collaboration tools in software engineering could be smarter.



|
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Could be smarter!

And it’s us researchers who could make it happen.

And it’s us researchers who could make it happen.



Collaboration tools could be smarter!

Let me try to amplify this message and try to convince you that we should really pay more attention to collaboration tools.



Argument 1: we are biased towards coding

Accepted Papers Papers accepted at ICSE 2020 (top of the list)

\ NOT

* Title

code-centric:
9/27

7

An Evidence-Based Inquiry into the Use of Grey Litera
He Zhang, Xin Zhou, Xin Huang, Huang Huang, Muhammad Ali Babar

Not so long ago, while thinking about this difference between IDEs and collaboration tools I've just talked about, I’'ve tried to kind of prove myself wrong and collect some

numbers.
| opened the then-recent list of papers accepted to ICSE, and tried to count the papers that are focused on code and those that are not. In the top of the list, two of three

papers were about code in one way or another.



Argument 1: we are biased towards coding

Plug the Database & Play With Automatic Testing: Improving System Testing by Exploiting Persistent Data
Predicting Code Context Models for Software Development Tasks

Prober: Practically Defending Overflows with Page Protection

Problems and Opportunities in Training Deep Learning Software Systems: An Analysis of Variance
Representing and Reasoning about Dynamic Code

Retrieve and Refine: Exemplar-based Neural Comment Generation

Revisiting the relationship between fault detection, test adequacy criteria, and test set size

SADT: Syntax-Aware Differential Testing of Certificate Validation in SSL/TLS Implementions
Scalable Multiple-View Analysis of Reactive Systems via Bidirectional Model Transformations
Scaling Client-Specific Equivalence Checking via Impact Boundary Search

SCDetector: Software Functional Clone Detection Based on Semantic Tokens Analysis

Seven Reasons Why: An In-Depth Study of the Limitations of Random Test Input Generation for AndroidExperience
Stay Professional and Efficient: Automatically Generate Titles for Your Bug Reports
Subdomain-Based Generality-Aware Debloating

Summary-Based Symbolic Evaluation for Smart Contracts

Synthesis of Infinite-State Systems with Random Behavior

Synthesis-Based Resolution of Feature Interactions in Cyber-Physical Systems

Team Discussions and Dynamics During DevOps Tool Adoptions in OSS Projects

Test Automation in Open-Source Android Apps: A Large-Scale Empirical Study

TestMC: Testing Model Counters using Differential and Metamorphic TestingExperience

The Impact of Generic Data Structures: Decoding the Role of Lists in the Linux Kernel

Towards Generating Thread-Safe Classes Automatically

Towards Interpreting Recurrent Neural Networks through Probabilistic Abstraction

Trace-Checking Signal-based Temporal Properties: A Model-Driven Approach

Ul Obfuscation and Its Effects on Automated Ul Analysis for Android Apps

Unchartlt: An Interactive Framework for Program Recovery from Charts

Understanding Performance Concerns in the API Documentation of Data Science Libraries
Verified from Scratch: Program Analysis for Leamers' Programs

Where Shall We Log? Studying and Suggesting Logging Locations in Code Blocks

Zeror: Speed Up Fuzzing with Coverage-sensitive Tracing and Scheduling

code-related 59,14%

ICSE 2020
RESEARCH

Knowing a bit about statistics, | took it a bit further and quickly labeled all of the papers by just the title and the abstract.

The ratio was about the same: most of the papers are dedicated to code in one way or another.



Argument 1: we are biased towards coding

Time-travel Testing of Android AppsTechnical

Zhen Dong, Marcel Béhme, Lucia Cojocaru, Abhik Roychoudhury

Towards Characterizing Adversarial Defects of Deep Learning Software from the Lens of U

Xiyue Zhang, Xiaofei Xie, Lei Ma, Xiaoning Du, Qiang Hu, Yang Liu, Jianjun Zhao, Meng St

Pre-print

Towards the Use of the Readily Available Tests from the Release Pipeline as Performance

Zishuo Ding, Jinfu Chen, Weiyi Shang

Pre-print

Translating Video Recordings of Mobile App Usages into Replayable ScenariosTechnical

Carlos Bernal-Cérdenas, Nathan Cooper, Kevin Moran, Oscar Chaparro, Andrian Marcus, |

Pre-print Media Attached

Typestate-Guided Fuzzer for Discovering Use-after-Free VulnerabilitiesTechnical

Haijun Wang, Xiaofei Xie, Yi Li, Cheng Wen, Yuekang Li, Yang Liu, Shengchao Qin, Hongx

Link to publication DOI Pre-print

Unblind Your Apps: Predicting Natural-Language Labels for Mobile GUI Components by De

Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhu, Guogiang Li, Jins|

Understanding the Automated Parameter Optimization on Transfer Learning for Cross-Proj¢

Ke Li, Zilin Xiang, Tao Chen, Shuo Wang, Kay Chen Tan

Pre-print

Unsuccessful Story about Few Shot Malware-Family Classification and Siamese Network t¢

Yude Bai, Zhenchang Xing, Li Xiaohong, Zhiyong Feng, Duoyuan Ma

Verifying Object ConstructionTechnical

Martin Kellogg, Manli Ran, Manu Sridharan, Martin Schéf, Michael D. Ernst

Watchman: Monitoring Dependency Conflicts for Python Library EcosystemTechnical

Ying Wang, Ming Wen, Yepang Liu, Yibo Wang, Zhenming Li, Chao Wang, Hai Yu, Shing-C

When APIs are Intentionally Bypassed: An Exploratory Study of API WorkaroundsTechnica

Maxime Lamothe, Weiyi Shang

Pre-print

White-box Fairness Testing through Adversarial SamplingTechnical

Peixin Zhang, Jingyi Wang, Jun Sun, Guoliang Dong, Xinyu Wang, Xingen Wang, Jin Song

sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart ContractsTechnical

Tai D. Nguyen, Long H. Pham, Jun Sun, Yun Lin, Minh Quang Tran 1

72

code-related 55,81%

ASE 2020 N Ere”
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| did the same for ASE, with similar results



Argument 1: we are biased towards coding

On the Relationship between User Chum and Software IssuesMSR - Technical Paper
Omar El Zarif, Daniel Alencar Da Costa, Safwat Hassan, Ying Zou

Pre-print Media Attached

PUMiner: Mining Security Posts from Developer Question and Answer Websites with PU LearningMSR - Technical Paper
Triet Le Huynh Minh, David Hin, Roland Croft, Muhammad Ali Babar

DOI Pre-print Media Attached

Painting Flowers: Reasons for Using Single-State State Machines in Model-Driven EngineeringMSR - Technical Paper
Nan Yang, Pieter Cuijpers, Ramon Schiffelers, Johan Lukkien, Alexander Serebrenik

Media Attached

Polyglot and Distributed Software Repository Mining with CROSSFLOWMSR - Technical Paper

Konstantinos Barmpis , Patrick Neubauer, Jonathan Co, Dimitris Kolovos, Nicholas Matragkas, Richard Paige

Media Attached

RTPTorrent: An Open-source Dataset for Evaluating Regression Test PrioritizationMSR - Technical Paper
Toni Mattis, Patrick Rein, Falco Dilrsch, Robert Hirschfeld

DOI Pre-print Media Attached

SoftMon: A Tool to Compare Similar Op Software from a - Technical Paper
Shubhankar Suman Singh, Smruti Ranjan Sarangi

Pre-print Media Attached
The Impact of a Major Security Event on an Open Source Project: The Case of OpenSSLMSR - Technical Paper

James Walden

Pre-print Media Attached

The Scent of Deep Leaming Code: An Empirical StudyMSR - Technical Paper

Hadhemi Jebnoun, Masud Rahman, Foutse Khomh, Houssem Ben Braiek

Pre-print Media Attached

The State of the ML-universe: 10 Years of Artficial Intelligence & Machine Learning Software Development on GitHubMSR - Technical Paper
Danielle Gonzalez, Thomas Zimmermann, Nachiappan Nagappan

DOI Pre-print Media Attached

Traceability Support for Multi-Lingual Software ProjectsACM SIGSOFT Distinguished Paper AwardMSR - Technical Paper
Yalin Liu, Jinfeng Lin, Jane Cleland-Huang

Media Attached

Using Large-Scale Anomaly Detection on Code to Improve Kotlin CompilerMSR - Technical Paper

Timofey Bryksin, Victor Petukhov, llya Alexin, Stanislav Prikhodko, Alexey Shpilman, Viadimir Kovalenko, Nikita Povarov
Pre-print Media Attached

Using Others' Tests to Avoid Breaking UpdatesMSR - Technical Paper

Suhaib Mujahid, Rabe Abdalkareem, Emad Shihab, Shane Mcintosh

Pre-print Media Attached

Visualization of Methods Changeability Based on VCS DataMSR - Technical Paper

Sergey Svitkov, Timofey Bryksin

Pre-print Media Attached

What constitutes Software? An Empirical, Descriptive Study of ArtifactsMSR - Technical Paper

Rolf-Helge Pfeiffer

Pre-print Media Attached

Whatis the Vocabulary of Flaky Tests?MSR - Technical Paper

Gustavo Pinto, Breno Miranda, Supun Dissanayake, Marcelo d/Amorim, Christoph Treude, Antonia Bertolino

Pre-print Media Attached 1

27
60,00%

MSR 2020
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And for MSR. Same.

For some reason, it feels like the SE research community considers code — and its analysis and manipulation — more important than activities besides coding.



Argument 2: we have more and more data

=" RESEARCH

Another argument is, the tools are becoming more integrated. A typical situation is, a team tracks issues in Jira, chats in Slack, does code reviews in Crucible, also hosts
code in a dedicated service, runs Cl builds in yet another dedicated service...

Teams often have to maintain a whole zoo of tools, and each of those tools is normally isolated from others. If we want to share the data between tools, the amount of
integration work grows quadratically as the number of tools grows.



Argument 2: we have more and more data .. iegated oo

Narrow-scope tools Integrated tools

N Eae?

/:‘“ RESEARCH

Lately, more and more of these activities have been supported by what | call platform tools, such as JetBrains Space or Github. The cool part here is, we can use data

from all collaborative activities in one context basically for free!
This enables us to benefit from synergy between more and more data types, so more and more data-driven enhancements are possible.

Moreover, modern collaboration tools are more platforms than tools: they are very friendly to extension.



How do we improve collaboration tools?

* Observability
e Decision-making support

e Taming the chaos

N Ee”
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OK, now that you are hopefully convinced that collaboration tools are worth special attention, let me share just a few broad directions of how exactly we could make the
collaboration tools of tomorrow smarter and more helpful.

Here are a few broad categories of approaches: [list]

Now let’s look into each of these categories.



Observability

N Ere”
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Well, observability is a relatively straightforward idea. Development processes are complex, teams could be huge, it might be hard to make sense of what is going on
— tools could help.



Observability

NN CEC O E N
EEEENEE  EEEEEEE
EENEEEE  EEEEEEE
(] [ | ] || | | |
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One obvious example of an observability feature is the Github’s punchcard. With just a single glance, one can make sense of the user’s activity through the year. While
this is no rocket science, extracting this information would otherwise require careful processing of all repositories, so it certainly helps with a bird’s eye view.



Observability

The City Metaphor

package ~ district
nesting level ~ color
class ~ building

methods (NOM) ~ height

attributes (NOA) ~ width, length
lines (LOC) ~ color IlII

“The basic illustration concepts of CodeCity” by AryanMasoud; https:

=" RESEARCH

A more interesting example is the CodeCity concept, a rather famous one. If we visualise not just aggregated activity, but code attributes, this gives us a bird’s eye view
over the codebase, which could be really helpful with making decisions — for example, if there are any monster classes to refactor.

The point that I’d like to hightlight, we don’t really have the major collaboration tools provide that much of a bird’s eye view or other observability related to the
engineering artifacts — and other important things, such as team communication.

Some tools have some reports, but they are normally really basic. Project management software is a bit ahead here with Gantt charts and alike, but that’s pretty much it.
Dedicated tools like CodeScene by Adam Tornhill and his team are still very niche instruments.

In our team, we are working to enable top-notch observability not just for technical artifacts, but also for the communication processes and collaborative work.
This is a really challenging task, I’m going to mention some of the challenges a bit later.


https://commons.wikimedia.org/wiki/File:City_metaphor.png

Decision-making support

N Ere”
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Another thing that collaboration tools could be better at, is provide decision-making support.



Decision-making support: recommender systems (short-term)

John Lee

Review #CR-42 i

h il
Changed fles A.dd Get changes history Get reviews
PoolUtil java reviewey| PoolUtil.java at4e5e

| —|  Propertieskt daagca 7 .
Properties.kt at 2017-08-16 cbi3t3 Reviews DB

Reviewer Added at | Added by

Jack Shaw | 2017-08-15 | John Lee

ity

7 Reviewer | Added at | Added by 5

Alice Doe | 2017-08-16 | John Lee 4
User Score X v
T  Alice Doe | 031 o ., File Commit |Author _ |Time Change | Reviewed by
Jack Shaw  0.22 3 -08- 1 -
o o ~ Poo\Ul\l.}ava. afdeSe | Alice Doe 2017-08-03 |+1 -22 Will Roy, Jack Shaw
ohn Lee PoolUtil.java | d349ca | John Lee |2014-05-01|+93 -7 Alice Doe, Will Roy

Recommendations |O Wil Foy 1014 ’ —
il Roy | 0. e, . Properties ki| cbidf3 |Jack Shaw|2017-01-09 [+3 -3 James Foo
Alice Doe James Foo| 0.07 -

Will Roy

John Lee

Overview Revisions
Authors
P John Lee

Reviewers

Suggested reviewers:

7 Alice Doe 3 will Roy \5,‘_6,
P RESEARCH

My favourite example here is code reviewer recommendation, I’ve worked on this problem a lot during my PhD and even before that. Your code review tool knows about
all your contributions to the project, so it could help find the expert for a new review. Luckily, it’s already a really mainstream feature.

There are also other contexts for recommenders in collaboration tools: for example, automatic bug assignment algorithms are quite similar to reviewer recommendation,
and are also potentially useful in their own way.

However, there are some issues: if we rely too much on such recommenders, it’s mostly the experts who are going to gain more expertise, so such recommenders may
promote inequality in knowledge distribution, which is not good.



Decision-making support: recommender systems (long-term)

Expandlng the Number of Reviewers in Mitigating Turnover with Code Review Recommendation:

Balancing Expertise, Workload, and Knowledge Distribution

Open-Source Projects by Recommending
Appropriate Developers

Aleksandr Chueshev®, Julia Lawall!, Reda Bendraou®, and Tewfik Ziadi®
Sorbonne University/LIPS," Lia '
Puts, France

Emails: da bendraou, tewfk. . {julia lawall) @inria

Abstract—C: i i of the affected code [10). As a software project
e project. Recentl ‘grows, the process of finding an appropriate reviewer becomes

begun practicing lightweight and tool-based eode review (k.2 pore (ime.consuming and loss effective. Recent talks at de
modern code review) to make the process simpler and more
nodern ¢ ke the proces { \mer® oper conferences reveal that the problem of finding appropriate
{here may mot be suficiently many fo ensare timely decisions, _Teviewers has cncouraged open-Source communities o become
In this paper, we propose a recommender-based approach 1o be  interested in expanding the number of reviewers. For nstanc,
used by open-source projects to increase the number of reviewers e Tntel Open Source Technology Center [11] and Apache
from amon the appropriate developers. We st mativate our . Sofiare Foundation (ASP) projects (e, Apache Spark [12],
paroch by n eplostory sady uf ine prfels hsed 0 che K [13) i that reviews v open for everyone,
itself, which, given a code change, initially searches for relevant _€ven if contributors only provide quick comments and insights.
reviewers bised on similarites between the reviewing history  We focus in this paper on the OSS model, which has

and the files affected by the change, and then augments this set become an important driving force in modern software der
with developers who have a similar development history as these o eq [14), Commercial companies and startups increasingly
reviewers but have litle or no relevant reviewing experience. To o L14] Commercial sompunk y
ke hes. recommendtions, e 1l on colldboraive loring, ORI 10 OSS a5 wel us opening

that all nine projects could heneft from our system by using it reviewers in OSS projects promotes knowledge sharing among
both i ous revi the contributors and helps contributors get to know the code-
base. Besides, having sufficient reviewers allows balancing
the workload without putting (00 much burden on a few key
persons. However, expanding the set of feviewers cannot be
implemented by randomly sclecting reviewers from among
the developers. A strategy is needed that takes into account
‘ode review is generally accepted to be an essential pillar  developers’ current expericnce and knowledge about the code
in any large-scale software development process. Today, the and the project struclure, Lo ensure that they will be able lo
software industry is increasingly replacing heavyweight old-  perform reviews suceessfully.
style code inspections, including waterfall-like procedurcs,  One strategy for expanding the set of reviewers is to use 2
expert panel, group meetings, and recommender system. Such a system could examine various
ments [1], with modem code review (MCR) [2]. MCR fol-  projeet data in order to identify appropriate developers and
fows a less-formal model based on asynchronous processes  suggcst them as possible reviewers for a given code change.
and focuses on reviewing code changes by a non-author, In recent years, recommender systems have aftracted a lot of
often using support tools, such as Gerrit [3], Github [4], ~attention and are being successfully used in various domains,
and CodeFlow [5]. Usually, MCR involves code discussions,  such as entertaiment [16]. (17), medicine (18], natural lan-
suggestions for fixes. and, finally. the integration of changes. _guage processing [19. an are engincering (201 (21

ber from among the appropriate developers.
Index Terms—recommender systems; code review; collabora-

tive filtering; matrix factorization;
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Developer turnover i inevitable on software projects and leads to
ductivty, and de-
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1 INTRODUCTION

knowledge loss,  reducti
fects

Turnover on saftware projects i frequent and inevitable and leads
to the loss of " project [3, 45].

increase workloads for developers. In this work, we suggest that

new employees (32, 36], it reduces the productiviy of development
teams [20, 32),it leads to the lass of eritical tacit knowledge [19,
1,32), and b of defects n

cess. We evaluate review recommenders in the context of ensuring
expertise during review, Expertse reducing the review workload
of the core team, CoreWorkload, and reducing the Files at Risk to
tumover, FaR. We ind that prior work that assigns reviewers based
o file ownership concentrates knawledge an a small group of ore
develapers increasing risk of knowledge loss from tumaver by up
t0 65%. We propose learning and rctention aware review recom

hat of

been shown

o o
product and reduce overall product quality [12, 31, 32]

through increasing knowledge retention by predicting leavers (3,9,
24], planning for succession [31, 33, 45, 49), documenting knowl.
edge, and persisting knowledge on StackOverflow and othr inter-
il QA forums [35, 40]. However, these mitigation practices often

tumover by

pecially by those who are expert enough to answer questions and
[<0)

during reviews by -26%. We develop th
suggests experts when none of the files under review arc hoarded
by developers, but distributes knowledge when files are at risk. In
this way, we are able to simultancously increase expertise during
seview with a ABxpertise of 6%, with a negligible impact on work-
load of ACoreWorkload of 0.09%, and reduce the fles at risk by
AFaR -28%, Sofla i integrated into GitHub pull requests allowing
developers toselect an appropriate expert or ‘learner” based on the
context of the review. We release the Sofia bot as well s the code.
and data for replication purposes.

KEYWORDS

Tumnover, Knowledge Distribution, Code Review, Recommenders,
Tool Support
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In this work,
because it naturally distrbutes knowledge by exposing developers
to new code during reviews. Prior work interviewed developers
and showed that code review is an opportunity for learning and
it plays a vital role n distributing knowledge [1, 6 17, 42, 47, 50].
Furthermore, studies have quantified the knowledge gained during
code review [41, 47] and shown that developers review code in
modules they have not modified (50). In contrast o other turnover
mitigation stategies, cade review is a common and well-cstabished.
tice in teams that does not require teams and individuals to
aler their current workflow:
In this work, we enhance code review's inherent knowledge

aring pe

K In contrast, 18,21

role of code review in distributing knowledge among developers.

Review Jud
Distibution.In &2nd International Conferenc on Software Engicering (ICSE.
20), May 25-29, 2020, Seou, Repubic of Korea. ACM, News York, NY, USA.
13 pages hitpssidoiorg/ 101 1S/A377411 330335

evaluation benchmark is how many of the actual developers who
formed th ded.

state that these recomumenders suggest obvious candidates and do

RESEARCH

But what if we keep the potential risks in mind? There are a couple pretty recent and really nice papers with a different take on reviewer recommendation: they propose
focusing on workload, knowledge distribution, and diversity of the participants besides expertise.
To my knowledge, this kind of recommenders is yet to make its way into mainstream tools. My colleagues and | are also working in this direction.
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ABSTRACT
Bus factor is a metric that identifies how resilient s the project to
the sudden engineer turnover. It states the minimal number of en-
gineers that have to be hit by a bus for a project to be stalled. Even
though the metric is often discussed in the community, few stud:
ies consider its general relevance. Moreover, the existing tools for
bus factor estimation focus solely on the data from version control
systems, even though there exists other channels for knowledge
generation and distribution. With a survey of 269 engineers, we find
that the bus factor is perceived as an important problem in collective.
development, and determine the highest impact channels of knowl
edge generation and distribution in software development teans.
We also propose a multimodal bus factor estimation algorithm
and an accompanying algorithm that uses data on code reviews
and meetings together with the VCS

on 13 projects developed at JetBrains and compared its results to
the results of the state-of-the-art tool by Avelino et al. against the
ground truth collected in a survey of the engineers working on
these projects. Our algorithm is slightly better in terms of both
predicting the bus factor as well as key developers compared to
the results of Avelino et al. Finally, we use the interviews and the
surveys to derive a set of best practices to address the bus factor
issue and proposals for the possible bus factor assessment tool
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1 INTRODUCTION
Software projects are rarely developed by a single person. Accord:
to the ISBSG repositor he a size of a software
development team, d over time, is 7.9 members, and the
median team size is 5 [2]. In collective work, it may be nontrivial to
track the knowledge distribution in the team. Tracking knowledge
distribution is important, as .g. work by the engineers with low
a given artifact is known to be more bug-prone [3].
team membership. Staff turnover and departure of the key project
members can lead to a situation when a significant part of the
project is poorly understood by the remaining project members.
This can result in project stalling o even project abandonment. For
example, Avelino et al. [4] have found that out of 1932 open source
projects 16% of the projects have faced the departure of all key
engineers, and in only 41% of these projects, the development has
been continued by other engineers. Learning how the knowledge
about the project is distributed (and acting on that knowledge)
can thus help to identify projects with high existential risks. This
enables a team or its manager to manage risks related to the sudden
engineer departure. One of the metrics that track project stalling
risk is the bus factor

Decision-making support: ensuring healthy knowledge distribution

RESEARCH

My colleagues and | recently looked at the concept of bus factor — pretty much the measure of knowledge inequality risks — from different fresh angles.
This work is still under review, so I’ll only touch on a couple main points.



Decision-making support: ensuring healthy knowledge distribution

Has no or almost no impact on project development mmm Results in project being incapacitated

Bus factor

Code red

Vague responsibility

Dissensus

Secret problems

Lack of documentation

Broken fix

Figure 1: Perceived importance of the various collective de-
velopment problems. All numbers are percentages

RESEARCH

First, software professionals name unhealthy knowledge distribution as one of the most serious issues with collaborative development.



Decision-making support: ensuring healthy knowledge distribution

Has no or almost no impact on project development mmm Results in project being incapacitated

Bus factor

Code red

Vague responsibility

Dissensus

Secret problems

Lack of documentation

Broken fix

Figure 1: Perceived importance of the various collective de-
velopment problems. All numbers are percentages

Most of our respondents would find a tool for bus factor calculation useful

RESEARCH

Second, most of them say that they would love for their tools to let them at least track the knowledge distribution, if not help maintain it.

Third, Additional data (e.g. code review history) provides better BF estimates



Decision-making support: ensuring healthy knowledge distribution

Has no or almost no impact on project development mmm Results in project being incapacitated

Bus factor

Code red

Vague responsibility

Dissensus

Secret problems

Lack of documentation

Broken fix

Figure 1: Perceived importance of the various collective de-
velopment problems. All numbers are percentages

Most of our respondents would find a tool for bus factor calculation useful

Additional data (e.g. code review history) provides better BF estimates than just VCS
RESEARCH

Third, Additional data (e.g. code review history) provides better BF estimates than just code history



Taming the chaos: process smells
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There is a popular concept of code smells — especially in the BENEVOL audience, I’'m sure most of you at least heard about it.
Some code smells can be located by static analysis and automatically fixed — that’s one of the killer features of modern IDEs.



Taming the chaos: process smells

Towards a Taxonomy of Bug Tracking Process
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Abstraci—Bug tracking s the process of monitring an
Wi tcre

varons perpecives, such s ressignmentof ks () g

o consensus on a formally specified bug tracking process, some
certain rules and best practices for an optimal bug fracking
process are accepted by many companies and open-source soft-
ware (OSS) projects. Despite slight variations between different
platforms, the primary aim of all these rules and practices is to

eactitioners’ non-
compliance with the best practices not only impedes the benefits
of the bug tracking process but also negatively affects the other
phases o the e cycl of softwar deslopment.

reicw, we analyaed 60 surces
and propase  (manamy of 12 bod p
ing process mls. T qunctinively

Index Terms—the bug tracking system, process mininy
formance checking, anfi-patterns, bug tracking smells, process
smell

1. INTRODUCTION

Bug tracking (BT) is a methodology for reporting and

Tracking System (BTS), eac
through to completion with informative reports which display
the progress. While there is no agreement on a formally

ified BT process, some certain rules and best practices for
an optimal BT process are reported in both white [11-[3] and
gray literamure. Practitioners’ non-compliance with the best
practices impedes the benefis of the BT process and should

To collect the set of deviations from the best practices, we.
explore the bad practices that developers follow throughout the
process, in this study. To denote these bad practices, we.
use the term bug tracking process smells. Some of the issues
in the BT process have been referred t0 in previous work from
suady was supportd by The Scintifc snd Teshnological Ressarch

um o Tuey (TUBITAK) 1505 iogrm. Peject Number: S20007%
sl clipse orgbugsfpage. cgi7id=hug-wring himl.

reports (5L 16]
ikl ik t st oo 4t becen e
Aot process model (rel e mode) nd the design i
model (ideal model) within the bug life cycle of an 0SS
project. However, none of them have gathered the bad practices
followed during the BT process with a systematic approach.
We believe that this set of bad practices would be valuable
for software practitioners to idenify possible bottlenecks or
problem areas in the bug tracking process.

To the best of our knowledge, this is the first systematic
study 1o collect bad practices in the process of BT, To e
these bad practices further, we identify the following rescarch
questions within our study:

ROI- What ar the abserved bad pracisfllwed by
developers during the bug tracking procy

To address this RQ, we scanned e and gray litera-
ture. We reviewed the studies that address bad practices (anti-
patterns) and problems encountered during the BT process.
Afterward, we proposed a taxonomy of BT process smells to
illustrate the cases where the developers do not conform to
the ideal BT process

To show quantitative evidence for BT process smells gath-
ered in our taxonomy, the following research question is
defined:

RQ2- How frequently does each BT process smell occur
in practice?

To answer this research question, cach BT process smell is
empirically evaluated by mining BT histories of six projects;
two Bugilla Projects (Wireshark, GCC), and four Jira Projects
(MongoDB Core Server, Evergreen, Confluence Server & Data
Center, i Sener & Data Cet). Wo sim 1o euiyae he
frequency of ech rocess smell over G 0 answer i

ch question.

‘The empirical results of our study indicate that the BT
process smells introduced in our taxonomy exist in every
project with different ratos. Also, we observed that over time,

rojcts e deresed. Th eeson o s might o ssocised
hvtogt=s process.

RESEARCH

But what if we go beyond code and search for smells in our processes?
Our colleagues from Bilkent University recently proposed a taxonomy of smells — potentially unwanted practices or patterns — in the bug tracking process.

This work merely proposes a framework: it doesn’t elaborate on whether the smells are perceived as problems and whether people would like their tools to help avoid
these smells.



My colleagues and | took a close look at these smells this summer. Many of the smells are perceived as problems indeed; people say they would love for their tools to

detect many of these smells.

Bug Tracking Process Smells In Practice
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ABSTRACT

Software teams use bug tracking (BT) tools to report and man:
bugs. Each record in a bug tracking system (BTS) is a reporting
entity consisting of several information fields. The contents of the
reports are similar across different tracking tools, though not the
same. The variation in the workflow of teams prevents defining
an ideal process of running BTS. Nevertheless, there are best prac
tices reported both in white and gray literature. Developer teams
may not adopt the best practices in their BT process. This study
investigates the non-compliance of developers with best practices,
so-called smells, in the BT process. We mine bug reports of four
projects in the BTS of JetBrains, a software company, to observe the
prevalence of BT smells in an industrial setting. Also, we survey de-
velopers to see (1) if they recognize the smells, (2) their perception
of the severity of the smells, and (3) the potential benefits of a BT
process smell detection tool. We found that (1) smells occur, and
their detection requires a solid understanding of the BT practices of
the projects, 2) smell severity perception varies across smell types
and (3) developers considered that a smell detection tool would be
useful for six of the smell categories

CCS CONCEPTS

«Software and its engineering — Software maintenance tools
Software configuration management and version control systems;
Mail

KEYWORDS

¢ tracking system, empirical study, developer perception, bug
tracking smells, process smell

and track progress on their resolution. Companies, communities,
and developer teams use the process of bug tracking (BT) to govern
the bugs. Dedicated bug tracking systems (BTS) provide a medium
to run the BT process in an organized manner. Although bots and
automated actors may take part in bug tracking [15, 30, the primary
agent of a BTS is individuals. Most actions in the bug tracking
pro has sub triaging, assigning, prioritizing, link

and resolving the bugs, are conducted by humans: either developers
or end users reporting the issues.

To err is human, and the process and products of human work
are often suboptimal. A growing body of rescarch in software eng
neering is dedicated to identifying the so-called smells, the charac
teristics and patterns in software systems that are either suboptimal
or dangerous per se or indicate underlying issues. The scope of re
search on smells is very broad [20]. It ranges from code smels (28],
through higher-level architecture and design smells [17, 2], to the
team- and ecosystem-level community smells [2]. Smells can be
specific to a certain aspect, such as security [8]

The potential benefit of dentifying smells in systems is multifac
eted. First, the presence of smells indicates technical and organiza
tional risks, which might help prioritize preventive measures such
as maintenance activities. Morcover, once detected, some smells
can be addressed with automatic approaches: for example, many
code smells can be eliminated with reengineering tools [10] or
automated suggestions from static analysis tools [23]

Aless studied, yet emerging area is the identification of smells
in processes rather than artifacts. Process smell are defined as the
deviations from best practices in ither the development process

as a whole [25] or i its specific parts, such as code review (6] and

Taming the chaos: process smells

Do you consider that the description and the detection methodology
outline a deviation from the best practice in the bug tracking process?

Not Referenced Duplicates

No Link to Bug-Fixing Commit

Ignored Bugs

Missing Priority

Closed-Reopen Ping Pong

Missing Environment Information

Bugs Assigned to a Team

Unassigned Bugs

Non-Assignee Resolver of Bug

Missing Severity

Reassignment of Bug Assignee

No Comment Bugs

Figure 3: Cumulative representation of developers’ view on
the smell definition and its scope.

How useful would a tool be for the automatic detection of this smell?
No Link to Bug-Fixing Commit { T pe—
Ignored Bugs JIl
Not Referenced Duplicates Jill
Missing Environment Information
Missing Priority JEl
Unassigned Bugs il
Closed-Reopen Ping Pong A
Bugs Assigned to a Team I
Non-Assignee Resolver of Bug
No Comment Bugs -
Reassignment of Bug Assignee Il
Missing Severity D
0 10 20

Figure 5: Usefulness rating of a potential tool with auto-
matic smell detection feature.
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Challenges with using collaboration data
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I’ve provided a few examples of directions for improvement of the tools. Now let me discuss a few challenges around this.



Challenges with using collaboration data

1. We don’t know too well what development teams need

N Ere”
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One more thing | didn’t mention is that it would also be nice to actually try existing approaches in practice — think defect prediction, automated bug triaging, and such.
We have more and more opportunities to test them in practice, and that is what we should be doing more.

This would help us address a big challenge: we researchers don’t really know too well what people really need. There are plenty of different practices, traditions,
methodologies, so many of the approaches are deemed to only be applicable in select scenarios.



Challenges with using collaboration data

2. Not everyone enjoys their data being processed, even if for their eyes only.

Maaike Brinkhof

Microsoft "MyAnalytics", what in the actual fuck is
this.

For your eyes only

i# ) Maaike Brinkhof
Your month in review: Collaboration \,‘ @Maai

uld your time working with others be

Someone coded this and spent time on this. Oh my god

Maaike Brinkhof

| have put my entire agenda full of meetings. Let's fuck this shit up.
28% Collaboration

in a typical working week

_Discover more _|

https://twitter.com/Maaikees/status/1432251254357495809 \ Es?
P RESEARCH

No comment



Challenges with using collaboration data

3. Some do not enjoy it for a reason: there are actually quite a few ethical concerns

Xsolla reportedly lays off up to 150
people based on big data

CEO's communications cause controversy as staff deemed "not
present" when working remotely are fired

Editor-in-Chief

solutions and other services to the games
Monday 9th August 2021

industry, has reportedly laid off up to 150 people
-- based primarily on a big data analysis of their SHARE THIS ARTICLE

Xsolla, a company that provides payments : ,% James Batchelor

productivity. f Recommend | in Share

https://www.gamesindustry.biz/articles/2021-08-09-xsolla-reportedly-lays-off-up-to-150-people-based-on-big-data \ [
P RESEARCH

No comment



Collaboration tools could be smarter!

And we could all help here.
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ICTL @ JetBrains Research

https://research.jetbrains.org/groups/ictl
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I’m happy to say that | really practice what | preach.

I’d like to briefly introduce my team at JetBrains Research.
We are currently a team of 9, and we have a bunch of projects, mostly practice-oriented, where we seek to do exactly that: enable collaboration tools to better model

their processes and provide assistance.



ICTL @ JetBrains Research

» Analysis of collaboration graphs (technical, social, combined)
» Expert recommendation systems on multimodal data

» Analysis of risky patterns of expertise distribution

« Duplicates search for SE

« Analysis of collaboration networks in the open source community

https://research.jetbrains.org/groups/ictl
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Here are the most prominent directions of our work. (list)



ICTL @ JetBrains Research

» Analysis of collaboration graphs (technical, social, combined)

» Expert recommendation systems on multimodal data

» Analysis of risky patterns of expertise distribution

« Duplicates search for SE

« Analysis of collaboration networks in the open source community

« We are open to collaboration!

https://research.jetbrains.org/groups/ictl

N Ee”

P RESEARCH

We are open to collaborations with academic researchers!
Most of all, we like building tangible things, so if you like the idea of converting ideas to prototypes, and trying things in practice, please do reach out.

We are based in Amsterdam, Saint Petersburg, and Moscow, but we mostly work remotely.






Thank you!

vladimir.kovalenko@jetbrains.com

vovak.me
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Finally, I'd like to thank you for your time and attention.
Thanks to organizers

Thank you for having me
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Thank you!
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