Code review for changes by newcomers:
Is it any different?

Abstract—Manual inspection of new source code changes,

or code review, has become a standard procedure in modern
software development. Among its various benefits is the exchange
of knowledge within a team. Some of code review effects, such as
quality improvement, can be observed and measured. Expertise
exchange within a team is harder to formalize and observe.
Meaningful contribution to a software project requires familiarity
with the codebase, so effects of experience are likely to be the
most evident during the onboarding of a new developer.
In this study we investigate the effect of developers’ low ex-
perience with the project on the code review process metrics.
We explore the connection between experience of changes’
author and review process and its outcomes, by examining if
they are different for changes authored by newcomers. We
compare reviewers’ experience, effort metrics and change merge
rate for newcomers’ changes and those by more experienced
people in 60 active open source projects. We find that for most
of studied projects a significant difference exists in terms of
reviewer experience and effort metrics. We also find that the
only phenomenon that is consistent across the vast majority of
projects is a lower merge rate for newcomers’ changes.
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I. INTRODUCTION AND BACKGROUND

The manual inspection of source code changes has become
a standart in modern software development process [1], [2].
The lightweight approach used in industry is a tool-based
manual review, also known as Modern Code Review (MCR).
Developers and managers responding to online questionnaries
report software quality improvement as a major benefit of
review process [1].

Apart from straightforward ways of quality improvement
such as early bug detection, the long-term benefits of MCR
include improved code maintainability [3], compliance of
code with conventions and guidelines [4], and exchange of
technical knowledge within the team [5]. Some of existing
research work is motivated by the need to make the code
review process more efficient. A vital step in improvement of
every process, especially as complex as human collaboration,
is establishing a reliable model of the underlying interaction
patterns [6]. Existing work aims at optimizing the whole code
review process in terms of effort required from developers.
Reviewer suggestion models [7], [8] help developers assign
the right reviewers to changes, which results in faster and
deeper reviews; bug prediction approaches [9], [10] suggest
to allocate more code review effort to the parts of codebase
that demand it more. When applied, these approaches are
ultimately meant to improve the quality of code after review,
given the same amount of human effort. In this work we
focus on another major effect of code review that, however,

does not affect the code itself — distribution of knowledge
and expertise within a team.

The concept of expertise is subjective and hard to formalize,
so reliable observation of the effects of code review on
expertise transfer and its overall benefits of sharing knowledge
for the team is a more complicated task than evaluating code-
related improvements such as decrease of defects density.

In the preceding decades social science and management
theory have revealed patterns, observed consistently across
various environments and industries, in the way teams collab-
orate and individuals behave within a team. Several definitions
and models for expertise of knowledge workers were sug-
gested as well [11], [12]. Not much existing work is dedicated
to applying these broader concepts to software engineering
process and code review in particular.

The effects of knowledge transfer are most tangible when
a new developer joins a team [13], [14]. Some software
teams take measures to help developers integrate by providing
mentorship to new developers [15]; the onboarding process
of new team members is also described at a higher level in
organizational management theory [16], [17].

In this work we identify the effects of onboarding process

on code review in terms of review process metrics, expertise
of participants, and outcome of the reviews. We explore
if code review process and its outcomes are significantly
different for changes authored by newcomers — developers
with little or no prior participation history within the project.
One goal of this study is to observe some known pattern in
human interaction, that is described at a higher level, in the
historical data from code review.
Another goal is to identify effects of review participants’
experience on the code review process flow. This knowldege
would contribute to future research regarding the role of code
review process on the exchange of expertise in teams and
possible ways of supporting the expertise flow with tools.

Contributions from new people are often encouraged in
open source projects [18] and may make up to a significant
share of all changes in project history. Even if a project is
only mainained by long-term collaborators with no third-party
contributors, every developer remains a newcomer for some
time after they start their work on a project.

Successful participation in a software project as a developer
requires a certain degree of familiarity with the codebase.
Consequently, the expertise transfer and effects of participants’
experience on the process are likely to be the most evidently



observable during the early stage of a developer’s work on
a project. Existing work in software engineering research
suggests more reasons to expect the code review process to
be different for newcomers. Mentoring of new developers is
known to help them climb up the learning curve faster [19].
However, with often limited human resources, assigning a
mentor to a new contributor is not a common practice in
community-driven software projects. The difficulties a new-
comer faces during onboarding may lead to increased atten-
tion from more senior developers to newcomers. Eyolfson et
al. [20] explicitly suggest this practice: "we may want to
promote the practice of daily committing developers code-
reviewing other developers commits”. Due to complexity of
software projects, lack of developers’ experience may naturally
lead to higher bug density in their changes [20]. One of
goals of code review process is prevention of post-release
defects, so this inequality is another reason to expect changes
from newcomers to be reviewed more thoroughly, or by more
experienced developers, than other changes.

II. RESEARCH METHOD
A. Research questions

We defined three research questions to investigate the poten-
tial dimensions of difference in review process for newcomers.
For each research question we calculated a corresponding met-
ric from historical data, split all observations into “newcomer-
authored” and “other” groups, and compared the distribution
of the metric in two groups. Splitting and comparison methods
are described later in this section.

RQ 1: Are changes from new developers reviewed by
more experienced developers? We evaluated the experience
in number of past reviewed changes by a reviewer divided
by average number of changes reviewed by any reviewer in
project for each reviewed changeset. The average is used
to take effect of project growth into account, thus allowing
to compare a reviewer to others in different stages of their
affiliation with the project, during which an absolute number
of reviewed changes grows.

We also compared a similar metric for number of changes
authored by a reviewer.

RQ 2: Do changes from new developers receive more
attention during review? We used numbers of reviewers and
comments, time between review creation and first comment,
and total review lifespan (time between creation and last
action), as estimators of reviewers’ attention.

RQ 3: Are changes from new developers less likely to
be merged? We calculated the merge rate for reviews and
compared it for the two groups.

B. Setting and method

1) Subject systems and reviews: We selected three large
open source ecosystems — QT, Eclipse and OpenStack, as
the subject for the study. In each of them a dedicated Gerrit
instance is used for code reviews.

In all the systems, the codebase is stored in multiple Git
repositories, each of which is represented by a separate Gerrit

project. Some of the existing studies focusing on open source
Gerrit instances treat the whole instance as one large project
[7], [21]. To achieve a finer granularity level, we analyzed
each Gerrit project independently. For each Gerrit instance,
we selected 20 projects with the most review activity during
the last year. For each of these projects, we downloaded and
processed the review data, consisting of review participants,
review actions and comments, along with the VCS activity
history, that included author and timestamp for every change.

We discarded automatic review events and comments such
as actions by sanity checker bots. To count the contributions
from different accounts of the same person together, we ap-
plied a simple name- and email- based author disambiguation
algorithm. In further analysis, we represented authors and
reviewers using aliases assigned during the disambiguation.

We processed both review and changes data. Iterating over
all events sorted by time, we recorded the total numbers
of previous contributions (authored and reviewed changes,
separately) for each actor (author or reviewer of a change)
by the time the change was authored. As the result, for
each review we knew the amount of prior participation of
author and reviewer(s) up to the point the review took place.
Aggregated information on total project activity was also
recorded for all reviews.

2) Identifying newcomers: Depending on numbers of pre-
vious contributions, some events were labeled as authored by
a newcomer. The labeling method is explained below.

A typical distribution of commit counts per author for an
open source project is right-skewed: many authors do not
contribute to the project continuously.

This asymmetry implies difficulty in defining newcomers
by setting a fixed threshold on prior contributions count: for
any reasonably high numeric threshold (tens of commits) most
project developers would be considered newcomers. Though
it may represent reality quite accurately for projects collabo-
ratively maintained by a large community, such a definition
would make little sense for this study because the edge-case
effects that we want to focus on are likely to be blurred.
For this reason we considered newcomers the developers who
are making their first, second, or third ever contribution to
a project. As a project grows and becomes more complex,
it also becomes harder for new developers to understand.
Thus, a newcomer threshold, expressed in a minumum number
of contributions that a developer should make before they
gain certain extent of understanding of code, should naturally
increase with time. To take this point into account, we devised
an alternative definition of newcomer to comply with the
growth requirement. We considered a newcomer every one
who authored less changes than a median number of changes
authored per person to date. It is important to note that,
despite a median dividing all developers into two equal parts,
newcomers defined by median were a minority in all analyzed
projects. This effect is caused by significant share of past
contributors, with changes count below median, who never
contribute to a project again, thus not creating new data points.



TABLE I: Comparison of reviewer expertise metrics

Metric Metric
is greater No is less
for newcomers | sig. | for newcomers
Experience | Newcomer | . diff. | o | s
System metric definition . * -
Changes Median 0 3 1 12 0 1 3
Eclipse <=2 I 1 0 16 210 0
Reviews Median 1 010 11 2] 2 4
<=2 1 0[]0 16 1 0 2
Changes Median 0 1 0 3 310 13
OpenStack <;2 0 01]0 6 1 0 13
Reviews Median 0 010 4 0 3 13
<=2 0 010 6 1 1 12
Changes Median 4 0 1 5 2] 2 6
QT <;2 1 210 10 0] 3 4
Reviews Median 2 0 0 2 1 3 12
<=2 1 01]0 6 370 10

In further analysis, we used both dataset splitting strategies.
In the tables the strategy where newcomers are those who
authored 0, I or 2 changes in the past are referred to as
”< 2 changes”; the other, where newcomers are developers
who authored not more than a median number of changes is
referred to as ‘Median’.

3) Comparing the metrics: After splitting the observations
into two sets by one of the strategies, we evaluated the
difference in distributions of corresponding metrics in these
sets. A difference in distributions of two subsets of a metric
indicates the relationship between the ‘newcomer’ factor and
the metric. The metrics selected for comparison are diverse
and derived from the human interaction history. Thus, we were
unable to make any assumptions about their exact distributions,
but we assumed the distribution law to be the same for
newcomers’ and others’ subsets of values of each metric. We
tested the hypotheses of these two distributions being shift
against each other — inequality of medians — with Mann-
Whitney U test.

III. RESULTS

1) RQI: Reviewers’ experience: Table 1 features the re-
sults of comparison of reviewers’ experience metrics between
changes authored by newcomers and by other developers for
the studied systems.

The results vary between the systems. For most Eclipse
projects the comparison reveals no significant difference
in reviewers’ experience. The possible reason is smaller
project sizes and consequent smaller sizes of data samples,
which require a stronger difference to be observed for
the distributions to be considered significantly different.
Selecting newcomers with median number of changes
reveals a difference for more projects, which suggests that
the newcomer effect in most cases takes place for some
developers with more than 2 prior changes, which are not
considered newcomers by the alternative selection method.
When reviews count is used for reviewer expertise estimation,
the direction of the difference is more stable across the whole
system — where the difference is significant, newcomers’
changes are reviewed by less experienced people. For the
majority of the OpenStack projects, regardless of chosen

experience metric and newcomer definition, the changes from
newcomers are reviewed by less experienced developers.
QT shows the most diverse results across the projects. The
strongest effect is observed when past reviews count is
used for reviewer experience estimation and newcomers are
selected with a median — in 16 of the 20 projects newcomers’
changes were reviewed by significantly less experienced
people. Two of the other QT projects demonstrate very strong
opposite effect in this case.

TABLE II: Comparison of review attention metrics

Metric No
is greater sig.
for newcomers | diff.

Metric
is less
for newcomers

Newcomer
definition
Median
< 2 changes
Median
< 2 changes
Median
< 2 changes
Median
< 2 changes
Median
< 2 changes
Median
< 2 changes
Median
< 2 changes
Median
< 2 changes
Median
< 2 changes
Median
< 2 changes

o Time to first comment Median
) < 2 changes
Median
< 2 changes
Numbers are counts of projects with corresponding effect and significance.
#kk o <0015 **: p < .01 % p < .05.
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2) RQ?2: Reviewers’ attention: Table II presents the com-
parison of review attention metrics. Similarly to reviewers’
experience, in most Eclipse projects the changes from new-
comers do not significantly differ from other changes in terms
of attention metrics. In most of the OpenStack projects, the
number of comments and time to first comment are less in
reviews of changes authored by newcomers. Number of re-
viewers and total review duration are different for newcomers’
changes in most OpenStack projects, but the direction of the
difference is not consistent. For most of QT projects, counts of
comments and reviewers were less for newcomers’ changes.
However, a strong opposite result is observed for several
projects. There is no significant difference for most of the
QT projects in terms of the time-based metrics. Similarly to
the comparison on the reviewers’ experience, for all metrics a
selection of newcomers using the median number of changes
reveals the difference for more projects than selecting them
by the maximum prior changes count of 2.

3) RQ3: Review outcomes: Results of review merge rate
comparison are presented in Table III. Consistently across
all three systems, we found newcomers’ changes less likely
to be eventually merged. Depending on newcomers selection
method, changes authored by newcomers were 10 to 15% less
likely to be merged than the other changes.



TABLE III: Comparison of review merge rate

Newcomers Newcomers
defined by median defined by < 2 changes
Merge rate Merge rate . Merge rate Merge rate .
System (newfomers) (otiers) Ratio (newcgomers) (otiers) Ratio
Eclipse 0.75 0.87 0.86 0.74 0.86 0.86
OpenStack 0.76 0.88 0.86 0.74 0.87 0.85
QT 0.84 0.93 0.90 0.80 0.93 0.86

IV. DISCUSSION

1) Findings: Our results indicate that at least in two of the
three studied systems there exists an association between low
author’s experience with a project and code review process
metrics. The newcomers’ changes are reviewed differently in
terms of who reviews their changes (reviewers’ experience),
how their changes are reviewed (attention metrics), and the
likelihood of their changes to be merged.

The strength and direction of this difference vary across the
systems. This suggests that the difference in actions towards
newcomers is not a property of the code review process itself
and is not imposed by the code review tool of their choice,
but indicates some kind of special attitude to newcomers. This
suggests that future research can be done to investigate more
deeply the impact of status and other social factors on team’s
interaction, in terms of both identifying social phenomena in
team’s work artifacts and taking them into account in work
towards the improvement of team collaboration tools.

Contrary to our expectations, we found reviewers of
newcomers’ changes to be more often /ess experienced in a
project, than the other way around.

2) Threats to validity and future work: The metric that we
used for empirical estimation of reviewers’ experience could
be improved. The average number of changes/reviews per
developer, which we use to normalize the absolute count of
contributions, does not remain the same through the project
lifespan in general case. We illustrate this point with the
following example: If a project that was initially developed
by a group of people who continuously contribute to it,
quickly gains popularity and attracts a lot of contributions
from new people, the average number of contributions per
developer decreases. This would lead to a significant increase
of estimated experience for existing developers over a short
period of time, which does not represent actual growth of their
experience. However, we believe that this point does not affect
the validity of our study, as we do not operate with the absolute
values of this metric, but only use it to compare developers
against each other. We plan to design an alternative method to
empirically estimate a developer’s project-wide experience in
our future work.

Treating every project within the whole system indepen-
dently, though providing a finer analysis granularity and
revealing differences between the project in a system, does
not let us consider a concept of a cross-project experience:
the developers who typically contribute to related subsystems
(which we considered here as different projects) should gain
experience with a given subsystem faster thanks to their

understanding of related parts and the whole system.

There is a similar effect related to cross-project experience,
which makes our methods of newcomers’ detection less
precise. Our method considers as a newcomer a developer
who contributed to other subsystems and had already gained
solid experience and reputation, but is at the first contribution
to a new subsystem. We also plan to address this issue in
further work.

3) Comparison with existing work: Our results regarding
reduced merge rate for newcomers is in line with existing
results on this matter. Bosu et al. used social graph analysis
to divide OSS contributors into core and peripheric groups
based on reputation of developers for GitHub projects [22].
They found a significant difference between the groups in
terms of patch acceptance rate and response time. Despite our
experience model not taking the social network structure in a
team into account directly, the similar results we obtained in
this study confirm the capability of a straightforward count-
based model to detect peripherical developers. Our work also
demonstrates the presence of differences in newcomers’ review
characteristics for reviews performed with a different tool than
GitHub. This point eliminates the workflow imposed by a code
review tool as a possible source of observed inequality.

V. CONCLUSION

Understanding the impact of code review process on distri-
bution of technical knowledge in the team, and vice versa, is
vital for arming the code review tools with features to optimize
the social outcomes of the process. In this study we focused on
the association of author expertise with review process metrics.
We explored the difference of some of the code review process
metrics for changes authored by newcomers. We used the code
reviews and changes history from the most actively developed
parts of three large open source systems.

We found that in most cases the newcomers’ changes are
reviewed in a significantly different way. They differ in terms
of reviewers’ experience, number of comments, time before
first comment, and other metrics. However, the strength and
direction of the differences tend to vary across systems and
projects.

This study suggests several directions for future work. The
variation of effects between some projects and systems and
their similarity among others suggests the existence of a
collective mindset towards newcomers, the nature of which
could be explored further.
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