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ABSTRACT

Onboarding is a critical stage in the tenure of software developers
with a project, because meaningful contribution requires familiarity
with the codebase. Some software teams employ practices, such
as mentoring, to help new developers get accustomed faster. Code
review, i.e., the manual inspection of code changes, is an opportunity
for sharing knowledge and helping with onboarding.

In this study, we investigate whether and how contributions from
developers with low experience in a project do receive a different
treatment during code review. We compare reviewers’ experience,
metrics of reviewers’ attention, and change merge rate between
changes from newcomers and from more experienced authors in
60 active open source projects. We find that the only phenomenon
that is consistent across the vast majority of projects is a lower
merge rate for newcomers’ changes.
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1 INTRODUCTION

Manual inspection of source code changes—code review—has be-
come a standard in modern software development [1, 2]. Developers
and managers responding to online questionnaries report software
quality improvement as a major benefit of code review process [1],
followed by a promotion of distribution of knowledge and expertise
within teams [3].

With the increasing adoption of code review in industry comes
the demand for smarter tools to support the developers with this
process. Notable examples of automated tool support for code re-
view include the integration of static analysis tools’ output at review
time [4] and various approaches to the identification of potentially
bug-introducing changes [5]. Such tools, however, focus only on
the content of the changes, without considering who is the target
of the automated support. In other words, the vast majority of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHASE’18, May 27, 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.

ACM ISBN 978-1-4503-5725-8/18/05...$15.00
https://doi.org/10.1145/3195836.3195842

Alberto Bacchelli
University of Zurich
Zurich, Switzerland

bacchelli@ifi.uzh.ch

automated tool support for code review does not consider the so-
cial dimension of the software development process, such as team
hierarchy and experience of developers.

A notable category of developers who would benefit from tai-
lored support is the category of new contributors, aka newcomers.
In fact, successful contribution to software projects requires a cer-
tain degree of familiarity with the codebase [6]. Empirical research
demonstrates that lack of such familiarity is commonly acknowl-
edged as a problem by new contributors [7]. Problems with on-
boarding result in lower quality of newcomers’ output: for example,
bug density in their code is higher [8]. As a reaction, some software
teams take measures to help developers integrate and climb up the
learning curve faster [9], for example by providing mentorship to
newcomers [10].

Mitigating newcomers’ onboarding difficulties is specifically
important for open source software (OSS) projects, which often
encourage external contributions [11], but these projects are often
limited in the resources they are able to invest in one-to-one men-
toring. As an alternative, to tackle this limitation, more senior team
members may review newcomers’ contributions more thoroughly
and with a higher priority. However, little empirical knowledge is
available on whether and how this happens in practice. Knowledge
is limited despite the fact that identifying newcomer-specific effects
in code review process is important both (1) to obtain a deeper
understanding of the onboarding process and its variation among
different ecosystems and technology stacks and (2) for development
of practices and tools that help teams to deal with onboarding issues
more efficiently.

In this study we set out to explore the differences in code review
process for changes that are authored by developers with very little
track record of prior contribution.

We focus on three popular OSS ecosystems that use Gerrit for
code review and perform a fine-grained analysis by considering
each subproject independently. We compare reviews for newcomers’
changes vs. reviews for changes by other developers along several
dimensions: (1) reviewers’ experience (based on developers’ track
record as change authors and reviewers), (2) review attention (based
on metrics such as the number of unique reviewers and comments,
duration of review, and time to first comment), and (3) merge rate
(likelihood to merge).

The results of comparison greatly vary across three ecosystems,
and even among different projects in each ecosystem. The only
exception is merge rate, which is 12-19% lower for newcomers’
changes in all three ecosystems. Lack of a universal effect suggests
that understanding of newcomer-specific aspects of code review
process requires more thorough analysis beyond straightforward
quantitative methods, despite the availability of large amount of
historical data.
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2 BACKGROUND

Existing evidence of newcomer-specific effects in code review is
limited and contradictory. Bosu et al. [12] used social network
analysis to identify core and peripheral developers in several OSS
projects using Gerrit [13], and compared some characteristics of
code reviews between these categories of developers. They found
that peripheral developers’ changes are less likely to be merged
and take longer to review. Conversely, Gousios et al. [2] conducted
a large-scale analysis of pull request lifecycles in GitHub projects
and found that pull requests receive no special treatment and have
almost equal chances to get merged, irrespective of whether they
come from external contributors or the core team.

Apart from the contradictory results, one limitation of these
studies is that they categorize developers based on their position
in project’s social network, rather than on their track record, thus
not allowing to account for variety in project scale: peripheral
developers in large projects can author hundreds of commits. In
addition, Bosu’s study [12] treats Gerrit instances of OSS ecosys-
tems as whole monolithic projects, which does not reflect project
organization in Gerrit workflow, where codebase is organized into
multiple smaller projects. While such monilithic approach allows
to account for cross-project experience of developers, it omits in-
teresting events of sporadic contributions of tenured developers in
sub-projects outside of their usual work area. Authors of such con-
tributions are effectively newcomers, despite their possibly central
position in the larger ecosystem network.

3 RESEARCH METHOD

We define three research questions to investigate relevant dimen-
sions in which the review process for newcomers may differ:

RQ 1: Are changes from new developers reviewed by
more experienced developers? Lower quality of newcomers’
changes and higher need for learning can be addressed by assign-
ing more experienced developers to review their changes. Thus,
we investigate whether OSS projects adopt this practice.

RQ 2: Do changes from new developers receive more atten-
tion during review? Low experience of author of changes can
lead to increased attention from reviewers, who could give sug-
gestions and support to help the onboarding of the new contrib-
utors. This would result in longer reviews with more comments
from more people. Time before first comment might be larger,
indicating a possibly lower priority of newcomers’ changes.

RQ 3: Are changes from new developers less likely to be
merged? We can expect newcomers’ changes to be merged less
often, as another consequence of the time it takes new developers
to become accustomed with a system and its inherent style [14].
For each RQ, we calculate a specific metric from historical data,

split all observations into newcomer-authored and other groups, and

compare distributions of the metric between two groups.

3.1 Setting and method

Subject systems and reviews. We select three large open source
ecosystems — QT, Eclipse and OpenStack, as the subjects of our
study. In each of these ecosystems, a dedicated instance of Gerrit
[13] is used for code review, and the codebase is stored in multiple
Git repositories, each of which corresponds to a separate Gerrit
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Table 1: Total activity in subject projects. An "event" corre-
sponds to participation of one developer in one review as
author. Event counts reported are after filtering,.

Total changes | Total reviews Events Events

(newcomers) | (total)
Eclipse 389,748 49,524 416 19,295
OpenStack 854,786 154,527 9,300 | 142,811
QT 635,043 126,219 3,325 | 108,512

project. Some of the existing studies [15, 16], when focusing on open
source Gerrit instances, treat the whole instance as one large project.
Instead, to achieve a finer granularity level, we analyze each Gerrit
project independently. Table 1 presents the total activity figures of
the subject projects. For each Gerrit instance, we select 20 projects
that have had the most reviews created during the last year. For
each of these 20 projects, we use Gerrit API to download the review
data (i.e,, review participants, review actions and comments) along
with the VCS activity history (i.e., change author and timestamp).

We discard review events and comments performed by automatic
tools, such as sanity checker bots. To count the contributions from
different accounts of the same person together, we apply a simple
name- and email- based author disambiguation algorithm.

For each code review in each Gerrit project, we extract every
event of type REVIEW, which represents an approval or rejection
of current changeset by a reviewer. Using the VCS activity data, for
each review event we identify the authors of the changeset under
review. This way, each event yields one or more author + reviewer
pairs. Each of these pairs represents an event of an author’s code
change being reviewed by a reviewer.

Using both code review and VCS activity data, we calculate the
amount of prior project participation of author and reviewer for
each review event. To adjust for difference in size and activity rate
between Gerrit projects, we also calculate project-wide aggregated
activity metrics, such as the average number of changes made or
reviews performed per developer, at the point of each review.

When comparing developers’ experience, we use number of their
contributions relative to the average number of contributions per
developer in the project, rather than the absolute count of commits
or reviews. This metric changes less with the growth of a project,
thus is more suitable for comparing events in different stages of a
project lifespan.

Identifying newcomers. Depending on the number of previous
contributions, we label some events as authored by a newcomer.
A typical distribution of commit counts per author for an open
source project is right-skewed (i.e., many authors do not contribute
to the project continuously). Such asymmetry makes it difficult to
define a newcomer by simply setting a fixed threshold on prior
contributions count: For any reasonably high numeric threshold
(tens of commits) most contributors would be considered newcom-
ers. Even though it may represent reality accurately for projects
that are maintained by a large community, such a definition would
make little sense for this study because the edge-case effects that
we want to focus on are likely to be blurred. For this reason, we use
a strict definition: We consider newcomers the developers who are
making their first, second, or third ever contribution to a project.
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Calculating the metrics. For RQ1, we evaluate reviewers’ experi-
ence in number of past reviewed changes by a reviewer divided by
average number of changes reviewed by any reviewer in project for
each reviewed changeset. To take effect of project growth into ac-
count, we normalize the number of changes by average number of
changes per developer in project. It allows us to compare a reviewer
to others in different stages of their affiliation with the project, ad-
justing to growth of absolute number of reviews. We also compare
a similar metric for number of changes authored by a reviewer. For
RQ2, we use numbers of reviewers and comments, time between
review creation and first comment, and total review lifespan (time
between creation and last action), as metrics of reviewers’ attention.
For RQ3 we calculate merge rate by dividing number of events from
merged reviews by total number of events.

Comparing the metrics. Having split the observations into two
sets (i.e., reviews to changes authored by newcomers vs. changes
authored by other developers), we evaluate the difference in the
distributions of our metrics in these sets. A difference in distribu-
tions of two subsets of a metric indicates a relationship between the
‘newcomer’ factor and the metric. We test the hypothesis of the two
distributions being shift relative to each other with Mann-Whitney
U test, using a p-value of 0.01 to define significance. For comparison
of review attention metrics and review merge rate, we filter the data
to only leave one event per author per review, not to let multiple
occurrences of events for the same author distort the distribution of
review-wide metrics. These filtered numbers are reported as counts
of events in Tables 1 and 3.

4 RESULTS

We report results aggregated per ecosystem. Results per project,
p-values, and a reproduction package are available online.!

RQ1: Reviewers’ experience. Table 2 presents the results of the
comparison of reviewers’ experience and review attention metrics
between changes authored by newcomers and changes authored
by other developers. The results vary between the systems. In most
Eclipse projects, the comparison reveals no significant difference
in metrics of reviewers’ experience; the possible reason is smaller
project sizes and consequent smaller sizes of distributions in com-
parison. For 13 of the 20 OpenStack projects, regardless of chosen
experience metric, the changes from newcomers are reviewed by
less experienced developers than changes from developers who are
not newcomers. QT projects display the most diverse results: About
half of the projects display no difference in experience of reviewers,
but for most of the other projects newcomers’ changes are reviewed
by less experienced developers than changes from developers who
are not newcomers. A few other QT projects, however, demonstrate
an opposite effect.

RQ2: Reviewers’ attention. In most Eclipse projects, similarly to
reviewers’ experience, the changes from newcomers do not differ
from other changes significantly in terms of attention metrics. In
most of the OpenStack projects, the number of comments and time
to first comment are less for newcomers’ changes; number of re-
viewers and review lifespan are different for newcomers’ changes,
but the direction of this difference is not consistent. For most of QT
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Table 2: Comparison of reviewer experience and review at-
tention metrics. Each cell counts the projects in the ecosys-
tem with the corresponding direction of metric difference;
numbers in bold when it is the majority of the projects.

For newcomers’
changes, metric is
Metric higher | same | lower
Reviewers’ exp. (past changes) 2 16 2
. Reviewers’ exp. (past reviews) 1 16 3
&, | Comments count 3 17 0
E Reviewers count 0 12 8
Time to first comment 1 18 1
Review lifespan 0 18 2
Reviewers’ exp. (past changes) 0 7 13
=4 | Reviewers’ exp. (past reviews) 0 7 13
%ﬁ Comments count 1 5 14
i Reviewers count 6 7 7
O | Time to first comment 0 6 14
Review lifespan 6 9 5
Reviewers’ exp. (past changes) 3 10 7
Reviewers’ exp. (past reviews) 1 9 10
| Comments count 3 12 5
O | Reviewers count 6 9 5
Time to first comment 1 14 5
Review lifespan 3 15 2

Table 3: Merge rates in subject ecosystems.
An “event” corresponds to the participation of one developer
in one review as author. Event counts are after filtering.

Merged events Merge rate
newcomers | others newcomers | others | ratio
Eclipse 291 16,334 0.70 0.87 | 0.81
OpenStack 6,478 | 113,669 0.70 0.85 | 0.82
QT 2,633 94,626 0.79 0.90 | 0.88

projects, most metrics reveal no difference between newcomers and
others in most of the projects. Reviewers count for newcomers’ re-
views is different in 11 of 20 projects. The direction of the difference,
however, is not consistent: The metric is greater for newcomers in
6 projects and less in 5 others.

RQ3: Review outcomes. Results of review merge rate comparison
are presented in Table 3. Consistently across all three systems, we
found newcomers’ changes less likely to be eventually merged.
Depending on the project, changes authored by newcomers are 12%
to 19% less likely (‘ratio’ column in Table 3) to be merged.

5 DISCUSSION

In the majority of the most active projects in OpenStack and in about
a half of the most active projects in QT, there exists an association
between the author of changes being a newcomer in a project and
code review process metrics.

Less expertise and attention. Newcomers’ changes, when com-
pared to others’ changes, are reviewed differently in terms of who
reviews their changes (reviewers’ experience), how their changes
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are reviewed (attention metrics), and the likelihood of their changes
to be merged. Contrary to our intuition, based on the idea that differ-
ences in metrics for newcomers’ changes might be associated with
mitigating the effects of their low experience, we found reviewers of
newcomers’ changes to be more often less experienced in a project,
than the other way around. However, strength and direction of
differences in reviews for newcomers vs. others vary across the sys-
tems. This variance suggests that the difference in actions towards
newcomers’ changes might indicate some kind of a special attitude
to newcomers that is specific for certain ecosystems or projects; al-
ternatively, variance in effects can be attributed to variance in types
of changes that are commonly submitted by newcomers. Future re-
search should focus on exploring its nature further. The possibility
of associating of peer attitude with quantitative characteristics of
review activity, along with lack of solid research background in this
area, suggests a demand for deeper investigation of the impact of
status and other social factors on team’s interaction. Such research
is important for setting up a methodology for identifying social ef-
fects in software teams’ work artifacts, which can find applications
in next generation of team collaboration tools.

Changes’ content. In our study we only focused on the quantita-
tive metrics of code review for newcomers, without looking into
contents of reviews. However, as previously mentioned, the differ-
ence in metrics could be attributed to difference in contents of the
changes (e.g., one may hypothesize that OpenStack’s newcomers
usually receive less comments because they usually make trivial
changes, compare to newcomers of other ecosystems). However,
this limitation is common for all quantitative studies. Quantitative
methods that we used in this study are only capable of unravel-
ing the most obvious effects. Lack of evidence of strong effects in
our study suggests the need for a qualitative study to explore the
newcomer-specific aspects of code review more deeply.

Estimating reviewers’ experience. The metric that we use to
estimate reviewers’ experience could be improved. The average
number of changes/reviews per developer (which we use to nor-
malize the absolute count of contributions) does not always remain
the same through the project lifespan. For example, when a project
quickly gains popularity and attracts a lot of contributions from
new people, the average number of contributions per developer
decreases. This leads to an increase of estimated experience for
existing developers, which does not represent actual gain of their
experience. However, we believe that this point does not affect
validity of our study, as we do not use the absolute values of this
metric, but only compare developers against each other; moreover,
several polar instances of this effect can even out when we com-
pare metrics for the whole history of the project, which contains
thousands of reviews. A finer method to estimate a developer’s
project-wide experience is a worthwile point for future work.
While the choice to treat every project independently provides
finer granularity and reveals differences between the projects in an
ecosystem, it does not let us consider cross-project experience of
developers. People who typically contribute to related subsystems
(which we considered as different projects in our study) should gain
experience with a new subsystem faster thanks to their understand-
ing of the whole system. Because cross-project connections are
out of the picture, our method considers someone who contributed
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to other subsystems and had already gained solid experience and
reputation, a newcomer, just as someone who makes the first con-
tribution to the whole subsystem. This issue should be addressed
in future work by treating the contribution history more precisely.

6 CONCLUSION

Understanding the impact of the code review process on the dis-
tribution of technical knowledge in a team, and vice versa, is vital
for arming the code review tools with features to optimize the so-
cial outcomes of the process. We conducted a large-scale empirical
quantitative investigation focused on the existing differences in the
review process for newcomers across 60 OSS projects belonging to
three ecosystems. We found that in some cases newcomers’ changes
are reviewed differently than other changes. Namely, the reviews
differ in terms of reviewers’ experience, number of comments, time
before first comment, and other metrics. However, strength and
direction of the differences vary across systems and projects.

This study suggests several directions for future work. Variation
of effects between some projects and subsystems and their similarity
among others suggests a promising course for a deeper exploration
of newcomer onboarding, and its aspects that are specific to certain
ecosystems.
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