Building Implicit Vector Representations
of Individual Coding Style

i) University of
Zurich™

N JET
BRAINS

Vladimir Kovalenko Egor Bogomolov ~ Timofey Bryksin Alberto Bacchelli

JetBrains Research JetBrains Research JetBrains Research University of Zurich

Hello everyone,

My name is Vladimir. I'm going to present a work titled “Building Implicit Vector Representations of Individual Coding Style”, which is a collaboration between my
colleagues and myself at JetBrains Research in Saint Petersburg and Amsterdam, and University of Zurich.

We need better models of collaboration to
empower smarter team collaboration tools

Let me start from afar. We don’t have time to go deep into detail anyway, so I’'m going to use a good chunk of the 10 minutes we have to share — and motivate — one
important message.

My goal with this talk is not to tell you many details about this piece of work, but rather to convey this single message — and spark up a discussion.

We need better models of collaboration to empower smarter team collaboration tools.

IDEs are powerhouses of code analysis

Refactor This Inspecting Code...
Processing project usages in .../loader/src/main/kotlin/space/orgchart/cli/ProcessData.kt [space-org-chart.main]
1. Rename ©OF6 -
2. Change Signature... #F6
3. Move... F6
4. Copy... F5
5. Safe Delete... #®
Inspection Results: of 'Project Default' Profile on Project 'hackathon...
Extract [=1 General 9
» (= E
6. Introduce Variable... NV T = CGroowy 206
_ - HTML 486 warnings 7 information
7. Property... X $F = T+ internationalization 2 errors 2 warnings
- % > JSONand JSON5 151 errors
8' Introduce Parameter... P It JavaScript 1076 errors 7454 5461 weal
9. Introduce Functional Parameter... <P 5 Kotlin 127 warnings 16 infos 40 weak warnings
i Java interop issues 1info 4 weak warnings
0. Function... X #M Function or property has platform type 4 weak warnings
s _ Package name does not match containing directory 1info
Function to Scope... XSO EM L
Migration 7 warnings
Type Parameter... Usage of redundant or deprecated syntax or deprecated symbols 7 warnings
K & LoadRawData.kt 7 warnings
Type Alias... LOHBA Unnecessary non-null assertion (1) on a non-null receiver of type RawData

Unnecessary non-null assertion (1) on a non-null receiver of type RawData
Extract Interface... Unnecessary non-null assertion (1) on a non-null receiver of type RawData
Extract Superclass... Unnecessary non-null assertion (%) on a non-null receiver of type RawData
Unnecessary non-null assertion (1) on a non-null receiver of type RawData
Unnecessary non-null assertion (1) on a non-null receiver of type RawData
Unnecessary non-null assertion (1) on a non-null receiver of type RawData
Naming conventions 10 weak warnings
Pull Members Up... Redundant constructs 112

Push Members Down...

Inline... N

nings 1 info 19 weak warnings

Style issues 2 warnings 14 infos 7 weak warnings
Markdown 47 warnings

We are all familiar with IDEs, that offer plenty of options for code manipulation and analysis.
One can refactor code, or find and fix a thousand issues, with just a single click.

IDEs are powerhouses of code analysis

PaiViewor _Current File KtFle: RepositoryUtilt o
[P R ACE:
PsiElement(LBRACE)
PROPERTY
PsiElement(val)
PsiElement(DENTIFIER)

DOT_QUALIFIED_EXPRESSION
RETURN
Psiglement(return)
DOT_QUALIFIED_EXPRESSION
DOT_QUALIFIED_EXPRESSION
DOT_QUALIFIED_EXPRESSION

? PsiElement(RBRACE)

! Property Value

children 0

class class org jetbrains kotlin.psi KtNameReferenceExpression

containingFile KtFile: RepositoryUtil.kt

containingKtFile KtFile: RepositoryUtl kt

context CALL_EXPRESSION

elementType REFERENCE_EXPRESSION

firstChild PsiElement(DENTIFIER)

greenstub null

dentifier PiElement(IDENTIFIER)

language Language: kotlin

lastchild PiElement(IDENTIFIER)

manager com.intelli,psi.impl.PsiManagerimp|@5430bbbd
o null

navigationElement REFERENCE_EXPRESSION

nextSibling PsiWhiteSpace

node Element(REFERENCE_EXPRESSION)

originalElement REFERENCE_EXPRESSION

parent CALL_EXPRESSION

physical

presentation null

prevSibling null

project Project

psiOrParent REFERENCE_EXPRESSION

ref null

referencedName resolveRefsOrFetch

referencedNameAsName resolveRefsOrFetch

referencedNameElementType IDENTIFIER

references . Getter:
resolv main
startOffsetinParent 0

null
text resolveRefsOrFatch
textLength
textOffset
textRange (2824,2842)
useScope Modules with dependents:space-org-chart.main
userDataEmpty false

Kotlin.idea.reft el I.PsiCache.

valid true
writable true

Thanks to rich internal representations of code

What enables IDEs to do incredible things with code are rich internal models of code and various connections between its elements.
For example, the IntelliJ platform and IDEs that rely on it all use PSI, a tree-based representation, that powers most of the refactoring and analysis features.

What about team collaboration tools?

Priority Major M e Viadimir Kovalenko Toblas Kahlert + if (finalGradleHomePath != null) {
Add revisions to review dialog: selection is reset on "More" button > //noinspection SSBasedInspection
o V + SwingUtilities.invokeLater(() —> {
pe
20 Nikita Skvortso Resol
3. Sele ﬁ ikita Skvortsov esolve
4. Sere Please, avoid SwingUtilities.invokeLater and use c
Expect sorved om.intellij.openapi.application.Application#invo

Actual

keLater(java.lang.Runnable)

see ModalityState documentation for detailed
Relate

reasoning
o Add r o

+ myGradleHomePathField.setText(finalGradleHomef
i i

tcher S f PN L T PV U

Boards board
Projects / & Kotlin / B kotlin
e Add Kiib extension to ARCHIVE fileType 2 o KypuTb

¥ 12 members
g [NI] Don't compute conversions for definitely not SAM parameter

2 [N C

Q) (NI Small efactoring around type conversions

Q) Refactoring: start commonization of type-conversions

ro KypuTb

g Refactoring: extract method about SAM conversions out

Elizabeth K
lo

§) (NI Support nested transacions nside constraint system

@ Fix "Koltin" typos throughout codebase (#3383)

@ Fix KT-39063 by not adding extendsFrom with metadata configurations
o)

Team collaboration tools mostly “just” present data as is

However, software engineering is not just about writing, reading, and maintaining code.
I’m happy | don’t have to sell the idea to this audience.
Software engineers use tools to collaborate, manage tasks, and socialize.

One thing that makes collaboration tools different from IDEs is relative simplicity. The vast majority of these tools and their features, essentially, provide a way to

manipulate and display rather simple data like text, and don’t build or use any models of processes they support. As the result, they don’t really provide any smart
features to users.

Smarter team collaboration tools

Smarter team collaboration tools require rich models of
interpersonal communication in teams

To sum things up, IDEs are about code, and have great code models. Team collaboration tools are about communication and collaboration, but they don’t have any
models of these processes.

And here comes my message again!

To make team collaboration tools smarter, we need to empower them with rich models of interpersonal communication and collaboration.

Smarter team collaboration tools

Ranked Motivations From Developers
Bl 7op [Ssecond [__] Third
L L ! L
Finding Defects | [|
Code Improvement | [|
Alternative Solutions —:]
Knowledge Transfer _:]
Team Awareness _:]
Improve Dev Process _:]
Avoid Build Breaks | [I]
Share Code Ownership _:l
Track Rationale -:]
Team Assessment -:]
tl) ztlao Atl)o ecl)o
Responses
Figure 3. Developers’ motivations for code review.

Bacchelli and Bird, ICSE 2013

When | say 'smarter, | don’t just mean ‘'more automated'. | also mean “better tailored to users’ needs”.

This is a picture from a rather famous paper on expectations and outcomes of code review, by Alberto Bacchelli and Chris Bird. It presents the most frequent developers’
motivations from the code review process.

Smarter team collaboration tools

Ranked Motivations From Developers
Il Top [Second [Third
L L ! L
Finding Defects | [|
ode improverent | [|
’n Alternative Solutions —:]
Knowledge Transfer _:]
Team Awareness _:]
7 Improve Dev Process _:]
Avoid Build Breaks | [I]
{Share Code Ownership _:l
Track Rationale -:]
Team Assessment -:]
tl) 2:)0 Atl)o sc])o
Responses
Figure 3. Developers’ motivations for code review.

Bacchelli and Bird, ICSE 2013

Please note how most of the reported motivations are not exactly about code, but rather about sharing knowledge within the team.
Modern code review tools are far from offering substantial dedicated support in these processes, with one underlying reason that they just don’t model these processes.

This finally brings me to our work.

Goal: build vector representations of individual coding style

Why: to trace style evolution and learning

Coding style is whatever makes one’s code
different from peers’ code

The goal of this work was to try to build representations of people’s individual coding style. This is an important element of the collaboration models that I've talked about
earlier.

With such representations in place, it would be possible to trace evolution of individual coding style and even detect learning between individuals, which brings the tools
closer to offering assistance or steering this process where necessary. Think of things like bus factor: tools of the future may be able to assist with this.

In this work, we define coding style as whatever makes one’s code different from peers’.

This way, we are not limited to any particular set of metrics, unlike some existing work on code stylometry: every set of metrics is naturally limited and may miss some
important aspects.

Here is an overview of our pipeline.

Method

changes

Authorship
attribution
model

e
B '. .

Vectorized changes by 3 developers
Point size represents attention value

Author
predictions

Aggregated representations of individual
coding styles

Authorship
Method attribution
changes model

Author

predictions

Aggregated representations of individual k
coding styles

Vectorized changes by 3 developers
Point size represents attention value

First, we train a code authorship attribution model. Essentially, the model learns to vectorize code changes so that changes authored by different developers are
separated as well as possible.

Authorship
Method attribution Acll{thf’f
changes model predictions
' C

Be

/ Aggregated representations of individual
coding styles

Vectorized changes by 3 developers
Point size represents attention value

Later, we aggregate representations of changes over a certain period of time into a vector that represents the corresponding developer.

Evolution of coding style

Time buckets

Start of HEAD
development
!

A
»

Ag A e o A e
o
®
B B ® B °
° oD *p

As the result, we have multiple snapshots of coding styles from multiple developers in the team, with each shapshot corresponding to a particular time period. Our hope
is, we can make sense of relative positions of representations and their relative movements and interpret them as proximity of individual coding styles, or their evolution
to become more similar or different.

Authorship Attribution Model

START TOKEN TOKENS
VN
PATH PATHS —>{CONCAT —> e —>» CTXq
.) (tanh)

CONTEXTS | WEIGHTS / \ [
[[enoToken | roxens conTExTS L)/ e

CTXk

@ — Weighted Sum

FC (f) | - Fully-Connected Layer, CHANGE;
f — activation function

E - Input / Output

cHanges | weichts [| \
ATTENTION SN
— Attention Mechanism

EMBEDDING | - Embedding

PREDICTED
AUTHOR

BATCH —— FC (softmax) —>|

CHANGEg |

CHANGE | — Numerical
Representation

| won’t go too deep into details of the authorship attribution model. | will only say that it’s modified code2vec, and encourage you to read more in the paper.

Evolution of coding style

Time buckets

Start of HEAD
development
!

Ao cl A e

~_ /

So, the interesting part here is relative positions and relative movement of representations. We hope to be able to make sense of it, but can we, really? If A and B are
close, or are moving closer to each other, does that mean that there is learning between them?

Does relative movement of representations reflect learning from each other?

We investigated it in the evaluation part of this study.

Developer survey

IntelliJ IDEA data and team survey

e Name a colleague in your team from whom you have learned some elements of coding

e To what extent have you learned from the person above?
1 (Very little: | can barely identify any particulars)

7 (Very much: | owe several elements of my coding to learning from this person)

e When do you think you have been learning from them the most actively?

Also asked to name people they didn’t learn from

We computed the representations from contribution history of a large project — IntelliJ IDEA Community, and asked the developers to indicate peers whom they have

learned from, and those they are sure they didn’t learn from.

Mapping survey results on data

23 positive pairs: reported learning
13 negative pairs: reported not learning

For all 20 time buckets:
229 distances in positive pairs
113 distances in negative pairs

Also distance difference between consecutive buckets:
204 values for positive pairs
99 values for negative pairs

The survey yielded 23 pairs of people who reported learning, and 13 pairs of people who reported not learning from each other.
For every pair, we calculated distances between their representations in 20 different time buckets, and changes in these distances over time.

Finally, we compared distributions of distances and their differences to see if they are different if people learn from each other.

Mapping survey results on data

23 positive pairs: reported learning
13 negative pairs: reported not learning

For all 20 time buckets:
229 distances in positive pairs Distances are lower
113 distances in negative pairs for positive pairs

Also distance difference between consecutive buckets:
204 values for positive pairs No significant
99 values for negative pairs difference

We found that distances between people one of whom reported learning from the other are lower than in pairs where one reported not learning from the other.

We found no difference in distribution of differences of distances.

Mapping survey results on data

23 positive pairs: reported learning
13 negative pairs: reported not learning

For all 20 time buckets:
229 distances in positive pairs
113 distances in negative pairs

f Distances are lower?
for positive pairs

Also distance difference between consecutive buckets:
204 values for positive pairs

: _ No significant /
99 values for negative pairs

difference 4

Learning is represented to an extent

From this, we conclude that our code style representations may capture learning between individual developers to an extent.

Summary

* We need rich models of collaboration to improve team tools: they are not so smart yet

We build representations of individual contribution style purely from technical records

* Our representations capture learning between developers to an extent

* This is an exciting research direction: team tools will evolve one day

Just read the bullet points :)

Problems

* Noise
* Resource consumption
* Low evaluation quality

e Context

There are a few issues | have to mention in the approach.

First off, the representations are noisy, thanks to the random nature of the ML model initialization. We ran the whole pipeline 30 times and did some filtering to smoothen
the data.

This made the whole pipeline, that is already rather hungry for computing power, very slow to run. The whole process takes about a day to compute on a normal
machine.

Our evaluation involves human input, so we had to limit it to 1 project. It could have been broader for more reliable results.

Finally, the authorship attribution model distinguishes between people not just on style, but also on context of their changes. While we took measures to account for that,
it is not clear whether context can be eliminated completely. We explore this rather deeply in the paper.

That’s it.

Thank you!

