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ABSTRACT
In this work we apply anomaly detection to source code and byte-
code to facilitate development of a programming language and its
compiler. We define anomaly as a code fragment that is different
from typical code written in a particular programming language.
Identifying such code fragments is beneficial to both language de-
velopers and end users, since anomalies may indicate potential
issues with the compiler or with runtime performance. Moreover,
anomalies could correspond to problems in language design. For
this study, we choose Kotlin as the target programming language.
We outline and discuss approaches to obtaining vector representa-
tions of source code and bytecode and to detection of anomalies
across vectorized code snippets. The paper presents a method that
aims to detect two types of anomalies: syntax tree anomalies and so-
called compiler-induced anomalies that arise only in the compiled
bytecode. We describe several experiments that employ different
combinations of vectorizaton and anomaly detection techniques,
and discuss types of detected anomalies and their usefulness for
language developers. We demonstrate that the extracted anomalies
and the underlying extraction technique provide additional value
for language development.
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1 INTRODUCTION
Anomaly detection techniques [18] have been successfully applied
to a variety of practical tasks in many areas. These techniques
help to detect cyberattacks [32, 35], identify pathologies in medical
images [6], and detect traces of fraudulent activities in financial
data [4].

In software engineering, anomaly detection is widely applied to
finding bugs [17], security issues [14], architectural design flaws [28],
workflow errors [15], synchronization errors in concurrent pro-
grams [36], and other anomalous patterns in code or other software
artifacts. Definitions of an anomaly vary from study to study and
are imposed by the exact task in each case.

In this study, we propose a new area of application for anomaly
detection — finding issues in programming language compilers.
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We define code anomalies as fragments of code that are not typical
within the community or an ecosystem of a given programming
language, or machine code that is uncharacteristic within the range
of output produced by the compiler. Such code could be useful to
both users and developers of the language: for example, anoma-
lous, yet actually existing, code snippets can highlight flaws in the
language design or indicate problems in the performance of pro-
grams, problems in code generation, compiler optimizations, type
inference, or data flow analysis, which turns them into a valuable
material for compiler tests.

The task of identifying code anomalies at a scale of a language
ecosystem consists in the following steps: (1) retrieve large corpora
of source code and compiled machine code that are representative
of the whole range of conventional coding practices and compiler
output, respectively; (2) transform source code and machine code
into a vectorized form that is digestible by anomaly detection algo-
rithms; (3) run anomaly detection across vectorized data; (4) process
the output of anomaly detection algorithms to identify, interpret,
and classify meaningful anomalies.

Established industry standard languages, such as Java and C++,
are not the most feasible targets for detecting anomalies at the scale
of a language ecosystem. While large amounts of open source code
in these languages are publicly available, mainstream compilers
are very well-tested and stable, which makes it hard to identify
unknown compiler issues through anomaly detection. At the same
time, it is essential that the target language has a significant and
diverse community of users.

Considering these arguments, we choose Kotlin [2] and its ecosys-
tem as a target for this study. Since the language is relatively young,
its compiler might still contain bugs and performance issues, which
makes anomaly detection more likely to provide actionable insights
for the language development team. At the same time, Kotlin is one
of the most rapidly developing languages with an actively grow-
ing community and a significant ecosystem of diverse open source
projects [3]. Finally, the development team of Kotlin is easy to reach
via a public issue tracker [1], which makes it easy to communicate
potential findings.

The contribution of this paper is threefold:

• A method for finding code anomalies for a chosen program-
ming language that is based on vectorizing a large code
corpus with code embedding techniques and then applying
anomaly detection algorithms on this vector data.

• A set of tools implementing the proposed method as well
as the dataset containing more than 4 million unique Kotlin
functions collected from Github and the bytecode for a part
of them (more than 41,000 compiled classes).

• The evaluation of the proposed method on the collected
dataset, which resulted in discovering several dozens of code
fragments that were considered useful by the Kotlin compiler
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team and that were included into the Kotlin compiler test
infrastructure.

The rest of the paper is organized as follows. In Section 2, we
discuss existing studies and tools that apply the anomaly detection
techniques to programs. Section 3 provides an overview of meth-
ods and techniques that are potentially applicable to finding code
anomalies. Section 4 presents our proposed approach to anomaly
detection, and describes the collected dataset as well as steps of the
processing pipeline. Section 5 outlines our approach to evaluation
of viability of the proposed method, as well as significance and
practical value of the detected anomalies. Section 6 discusses possi-
ble threats to validity of our study. Section 7 presents the obtained
results and describes the most interesting types of discovered anom-
alies. Section 8 concludes the paper by summarizing our results
and providing possible directions for future work.

2 RELATEDWORK
Several papers and tools exist that are aiming to search for anom-
alies in programs. All of them introduce their own definitions of
code anomalies, so their goals, methods and results also differ.

The GrouMiner tool [26] was developed to detect anomalous
patterns in object interaction in Java programs. The approach is
based on modeling object interaction with a directed acyclic graph,
the nodes of which are constructor and methods calls as well as
fields references, while the edges represent dependencies between
them. The tool performs a static code analysis: the source code is
parsed into an abstract syntax tree and an object usage graph is
built. Graph-based anomaly detection methods are used to detect
unusual method calls and other atypical areas of the control flow
graph.

A somewhat similar idea is presented in [40]: the authors propose
mining usage models for all objects from source code as sequences
of their method calls. If an abnormal usage pattern emerges in some
code fragment, it is treated as an anomaly and a defect candidate.
This approach is also based on static code analysis and employs
graph-based anomaly detection techniques.

Undoubtedly, object interaction anomalies are important, but
they represent only one possible anomaly type, and there could
be many others, for example, atypical usage of some language
constructs (not involving object interaction of any kind).

The DIDUCE tool [17] for Java programs is based on dynamic
code analysis: it runs a program and stores values for each expres-
sion found in it. It tries to induce invariants for these expressions,
starting from the strictest ones and weakening them as new values
are encountered. When these rules are violated, meaning that some
expression gets a value that significantly differs from all previous
values of this expression, this is reported as an anomaly. Papers [34]
and [14] also use dynamic code analysis but collect and analyze
traces of system calls.

Several papers [24, 28] define code anomalies as “code smells” —
specific code patterns indicating possible architectural flaws. An
example of such pattern is a Feature Envy smell that arises when a
method interacts with other classes more than with methods and
fields of its own class. Finding such code fragments in a project
usually helps to improve its design.

All these approaches are helpful if one is trying to find logical
errors or architectural issues in programs and therefore are tar-
geting programming language users, not its developers. It’s also
worth noting that dynamic analysis algorithms don’t seem like a
good fit for our task since we are looking at a potentially very large
code base, and running all this code does not seem feasible. Projects
might have all kinds of strange dependencies, and it would require
a lot of human effort to understand how all of them are supposed
to be compiled and run.

In the domain of programming language development, code
anomalies, thanks to being atypical code, while having been actually
implemented by someone, can be used as a source of data for fuzz
testing techniques, which have proven to be valuable for finding
tricky issues in compilers [41].

3 DETECTION OF CODE ANOMALIES
3.1 Anomaly detection techniques
In data mining, anomalies are defined as deviations of the observed
behavior from the expected behavior and are divided into three
types [9]:

(1) Point anomalies occur when a single data instance is consid-
ered abnormal compared to other data.

(2) Contextual anomalies occur when a single data object is
anomalous in a specific context but not otherwise.

(3) Collective anomalies occur when linked objects are observed
against other objects as an anomaly.

In this study, we focus solely on point anomalies, but other anom-
aly types are also worth investigating and might lead to interesting
results.

Our task implies that a dataset is unlabeled and we have no ex-
amples of code anomalies, which leads us to unsupervised anomaly
detection methods [18], such as Local Outlier Factor [7] and Isola-
tion Forest [22, 23]. Several clustering methods [25] could be useful
for our task. Clustering methods such as DBSCAN [13], ROCK [16],
or SNN [12] do not require each object to be a part of a cluster, and
we can see out-of-cluster objects as anomalies. One-class SVM [33]
is a classification algorithm, but it assumes the presence of only one
class, so the method could be used to detect outliers in unlabeled
data.

Neural autoencoder [11] can also serve as an anomaly detection
method. Autoencoder is tasked with reconstruction of a data point
through an intermediate representation. After decoder is trained on
a set of datapoints, we can identify anomalous points by measuring
reconstruction loss, with the assumption that the loss will be higher
for outliers.

Statistical methods [30] for anomaly detection measure the com-
pliance of data to a specific probability distribution. The degree
of anomalous behavior is the magnitude of the object’s deviation
from the distribution. For some methods in this group, an initial
assumption about the distribution of data points is required, others
may calculate a likely distribution that can generate the observed
dataset.
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3.2 Source code embedding
All of the anomaly detection algorithms, like most machine learn-
ing techniques, require embedding of analyzed objects in numeric
vector space. To do so, first of all, we need to determine the level
of structural units that will undergo analysis. It could vary from
individual tokens and functions to files or even entire projects. In-
dividual tokens and lines of code are highly dependent on their
context and will not capture any significant anomalies. Functions
are good candidates because most of them contain at least several
lines of code that might form an anomaly and are isolated enough
to represent a single operation within a class. Classes are also fit-
ting for finding anomalies, especially in inheritance, properties use,
class type parameters, etc. Using files as structural units would
only allow us to detect anomalies in top-level constructions, of
which there are not many and which rarely form anomalous code.
Though analyzing entire projects as structural units of code may
reveal some general patterns, these patterns will vary from one
subject area to another and may not be informative.

Second, we need to define the level of code representation. It
could be the source code itself (as text or token sets) or represen-
tations at different compilation stages. In case of Kotlin, we have
access to following representations: a syntax tree; an intermediate
representation for a specific compiler back-end (IR); JVM bytecode,
LLVM bitcode or Javascript code generated by the compiler. Differ-
ent representations require different embedding techniques.

We can treat source code as text, which will allow the use of
various natural language processing (NLP) features, such as bag-
of-words or N-grams [19, 39]. These features tend to capture the
semantics of functions and variables names but tend to ignore the
program’s overall structure. NLP techniques could also be applied
to bytecode since bytecode representation has a similar linear struc-
ture.

Representing a code fragment as a syntax tree introduces a wide
range of embedding techniques divided into explicit and implicit
approaches. Explicit approaches construct the vector from software
metrics values [8, 27] capturing lexical, syntactical, architectural
and other properties. The resulting vectors are quite easy to build
and comprehend: observing these values may provide a clear un-
derstanding of why this particular code fragment is considered to
be anomalous. However, it is always a challenge to choose which
metrics to include (for example, [38] describes almost 300 metrics),
especially when we are trying to search for anomalies of an un-
known nature. Implicit approaches use features such as N-grams
of token types, syntax trees hashing [10, 20], syntax trees encod-
ing [29], the latent vector of a neural network autoencoder [37] and
other distributed code representations [5]. These vectors usually
lack in interpretability but have proven themselves to be capable
of capturing complex code properties, including semantic depen-
dencies.

Described methods are also applicable to other available repre-
sentations of Kotlin source code mentioned before: a list of LLVM
bitcode instructions, a Javascript syntax tree, and an intermediate
representation (IR).

4 THE PROPOSED METHOD
In this study, we perform a search for code anomalies in Kotlin
programs that are written specifically for the JVM, since it com-
prises the majority of code written in Kotlin. We analyze these
programs in the form of syntax trees and sequences of bytecode
instructions (other representations mentioned above are available
only for Javascript and LLVM platforms).

Our goal is to detect two types of anomalies: syntax tree anom-
alies and compiler-induced anomalies. A syntax tree anomaly is a
code fragment that is written in some way that is not typical for
the programming language community. It could have abnormal
complexity, be composed of sophisticated code constructs or in any
other way differs from the rest of the code written in this language.

A compiler-induced anomaly is a code fragment that is not an
anomaly in the syntax tree form but is an anomaly in the bytecode or
vice versa. We choose to call them compiler-induced because their
anomalous nature is revealed only after their bytecode is obtained
and analyzed. We should note, though, that this wording does
not imply any negative connotation: for instance, if the compiler
does a good optimizing job and turns anomalous source code into
non-anomalous bytecode, this is still an unexpected behavior and,
therefore, an anomaly.

4.1 Dataset
4.1.1 Source code and syntax trees. To collect a large dataset, we
cloned GitHub repositories that were created before March 2018,
stated Kotlin as their main language, and were not forks of some
other projects. That resulted in 47,751 repositories containing 932,548
source files with 4,044,790 unique functions. The collected source
code was transformed into syntax trees using the parser module of
the Kotlin compiler.

For the syntax trees code representation, we decided to use
functions as code units. This allows us to simplify further analysis
of detected anomalies, whether it is an expert assessment or a
performance test. A function is an isolated unit of code, which
is convenient if an anomalous fragment is to be analyzed by a
compiler test because we only need to load the classes used in the
function and to provide the input data it requires. Also, it will be
easier for experts to analyze the function’s code due to its isolation.

4.1.2 Bytecode. To detect compiler-induced anomalies we require
both syntax tree and bytecode representations. GitHub supports
publication of the project’s builds packages which allows the direct
collection of bytecode. Even though the dataset we collect in this
way is relatively small, that kind of extraction approach is highly
convenient because it allows us to collect the bytecode produced by
its developers instead of figuring out the correct environment for
each project and building them ourselves. We managed to obtain
41,226 compiled class files, which we then transformed into lists of
JVM instructions.

Anomaly detection at functions level for bytecode representation
is not as efficient as in the case of syntax trees because many Kotlin
syntax constructions create additional code in bytecode representa-
tion. For example, lambdas (anonymous functions) are transformed
into dummy functions. If an algorithm finds a bytecode anomaly
related to such dummy function, it will be difficult to match a set
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Figure 1: Overview of the proposed method for extraction and assessment of anomalies

of bytecode instructions to the source code. This directed us to
choosing a class as a unit of evaluation for bytecode representation.

4.2 Anomaly detection pipeline
To detect and evaluate code anomalies, we propose the pipeline
shown in Figure 1. It takes source code and project builds that are
collected from GitHub as an input and converts them into syn-
tax trees and JVM instructions lists using the dataset extraction
module. Features are then extracted and anomaly detection tech-
niques are applied. On the post-processing step, detected anomalies
are classified according to their type. Finally, classes of anomalies
are presented for expert evaluation. Then the pipeline’s steps are
adjusted for the next iteration with provided feedback.

The rest of this section discusses each step of anomaly detection
in more detail. We describe assessment of individual anomalies in
section 5.2.

4.2.1 Feature extraction. We use software metrics and N-grams
extraction to embed the syntax tree representation of the code. For
the bytecode representation, only implicit feature extraction via
N-grams is used. The bytecode has a linear structure and is rarely
analyzed by humans, and fewer metrics are known for it.

Software metrics are divided into 4 groups:

• general codemetrics: the number of lines of code, the number
of nodes and the height of the syntax tree, etc.

• structural metrics: nesting depth, cyclomatic complexity,
number of branches in “when” expression, etc.

• external metrics of Kotlin functions: the formal arguments
number, type parameters, annotations, the presence of a
suspend modifier, etc.

• the number of particular language elements: expressions,
operators, keywords, function calls, string patterns, etc.

Each function is encoded by a vector that contains the values of
these metrics.

The N-grams extraction is performed as follows: the algorithm
traverses a syntax tree and generates all unigrams, bigrams, ..., N-
grams from connected nodes and adds a counter with value 1 for
a new N-gram or increments the counter for an existing N-gram.
For efficiency reasons, only parent-child relations are used to build
N-grams, since considering all other relations (e.g., between sibling
nodes) results in a vast number of N-grams, which will hinder the
algorithm performance.

Both approaches result in a set of feature vectors. In the case of
explicit representation, it is a k-dimensional vector where k is the
number of metrics used. In the case of N-grams representation, it
is a sparse vector where values represent counters of all N-grams
met.

For compiler-induced anomalies detection, we have to process
bytecode instructions sequences. N-grams are extracted incremen-
tally from the sequence using a fixed size window. Within this
window the extraction module generates all possible unigrams, bi-
grams, ..., N-grams, then moves the window one instruction ahead
and repeats the procedure. Figure 2 presents an example of such
extraction for N = 3.

Figure 2: Extraction of N-grams from sequences of bytecode
instructions

4.2.2 Anomaly detection. In the first phase of this study, to assess
general viability of the idea of anomaly detection in syntax trees,
we settled on relatively simple algorithms for anomaly detection —
Local Outlier Factor [7] and Isolation Forest [22]. We chose these
algorithms because they are relatively easy to implement and trial,
compared to more complex approaches.
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Local Outlier Factor is based on the idea of calculating an anom-
aly score for each object based on its distance to k nearest neighbors
in the dataset. More precisely, the local density of a data point is
considered: a coefficient of the point’s reachability to its k nearest
neighbors. The anomaly score of a point is calculated as the ratio
of local density to the mean local density in the region of a point.

Isolation Forest employs the principle of random forest to sep-
arate outlier objects from the rest of the data. Each isolating tree
is constructed in the following way: at the current node, the algo-
rithm randomly selects a feature and a value to split the data into
child nodes. The process continues until all elements are separated
from each other. The normality measure for an object is introduced
as the average length from the root to the object’s position in all
isolation trees. Thus, the earlier the object is separated from the
sample by isolation trees, the smaller its measure of normality will
be. Figure 3 shows an example of isolation trees. Anomalous objects
are marked in black, while “normal” objects are marked in gray.

Figure 3: Detecting anomalies with Isolation Forest

Aforementioned algorithms are more efficient if the analyzed
objects are represented by vectors of low dimensionality. When
working with high-dimensional data, calculations might require
too much time, hence it is necessary to fine-tune the algorithm
parameters. For instance, a good choice of parameters for the Iso-
lation Forest can sufficiently reduce processing time and memory
usage without any noticeable changes in detection accuracy [23].

A popular approach to anomaly detection in high-dimensional
datasets is a neural autoencoder [31], a popular type of neural
networks. An autoencoder isn’t so resource-intensive comparing
to the Local Outlier Factor and Isolation Forest, which is crucial
when we analyze the N-grams representation dataset since each
feature vector contains thousands of values.

Figure 4 shows a basic autoencoder architecture that consists of
input and output layers of the same size and a hidden layer that
is significantly smaller. During the learning process, autoencoder
trains to return the same vector as it receives as input. One of the
results of this training is that we then have hidden layer values that
comprise a vector representation (or embedding) of the input data.
Another result is that if the trained autoencoder fails to reconstruct a

data point, this data pointmay be an outlier to the dataset. Therefore,
we can use the recovery error, i.e. the distance between input and
output vectors as an anomaly score.

We propose the following as a way to detect compiler-induced
anomalies: first, we calculate autoencoder anomaly scores both for
syntax tree and bytecode representations of the same code fragment.
If these scores differ by more than a specified threshold, we consider
this fragment to be a compiler-induced anomaly.

Figure 4: Architecture of a neural autoencoder

4.2.3 Anomalies classification. We grouped anomalies into classes
for further evaluation. Each anomaly was manually labeled with a
set of tags. We performed classification manually to get the most
reliable result possible.

5 EVALUATION
To assess the viability of our approach to identification of anomalies,
we conduct an evaluation of significance and practical value of
anomalies extracted from the dataset. In this section, we describe
the process of building the evaluation set (Section 5.1), our approach
to assessment of importance of individual anomalies (Section 5.2),
and the results of this assessment (Section 5.3).

5.1 Building the evaluation set
In this section we describe the process of building the set of anom-
alies for expert assessment.

5.1.1 Extracting anomalies from explicit source code representa-
tions. As the first step, to build explicit representation vectors for
syntax trees in the dataset, we calculated 51 software metrics for
each code fragment (49 quantitative and 2 binary). We scaled the
quantitative attributes to the mean of 0 and the variance of 1, and
reduced dimensionality of metric vectors from 51 to 20 via Principal
Component Analysis. The number of principal components was
chosen manually as a compromise between the time of training the
models and the persistence of the explained variance (0.8).

We ran Local Outlier Factor and Isolation Forest outlier detection
algorithms (Section 4.2.2) against the vectorized snippets. Both of
these algorithms have multiple hyperparameters. The first notable
parameter is a contamination parameter, influencing the fraction
of code fragments that should be marked as potential anomalies.
Since the aim of the study is to find a set of anomalies that could
be reviewed by experts, we chose the contamination parameter so
that the classifier marked 0.01% of the dataset, or approximately



MSR 2020, 25–26 May 2020, Seoul, South Korea

400 out of 4 million collected functions. Specific parameter values
were 0.0001 for Isolation Forest and 0.001 for Local Outlier Factor.

Other notable parameters of the outlier detection algorithms are
the number of neighbors (n_neiдhbors) for the Local Outlier Factor,
which we set to 20, and the number of trees built (n_estimators)
for the Isolation Forest, which we set to 200. We settled on these
values after several rounds of experiments and manual assessment
of the resulting anomalies. As a result, these outlier detection al-
gorithms have extracted 322 unique anomalies that we considered
worthy of the attention of the Kotlin compiler team, from explicit
representations of code snippets in the dataset.

5.1.2 Extracting anomalies from implicit representations. To build
implicit representation vectors for both syntax trees and bytecode,
we extracted unigrams, bigrams, and trigrams from individual in-
struction sets. The extraction yielded 1,708,022 unique N-grams for
syntax trees and 110,835 unique N-grams for bytecode. Then we
filtered rare and frequent N-grams, since they contain less informa-
tion about the object, and ended up with 15982 N-grams for syntax
trees and 4560 for bytecode.

Further, we trained an autoencoder to reconstruct N-gram vec-
tors and optimized hyperparameters of the autoencoder by a heuris-
tic search, taking into account limitations onmemory use. Resulting
parameters for the autoencoder are: number of epochs — 5, mini-
batch size — 1024, compression rates — 0.25, 0.5, and 0.75.

To measure the anomaly score of individual objects, we calcu-
lated the Euclidean distance between the input and the output
vectors of the autoencoder. We considered anomalies all vectors
of syntax trees with anomaly score exceeding 3 root mean square
distances. For the compiler-induced anomalies, the threshold differ-
ence between the syntax tree and bytecode anomaly scores was set
to 0.8. These values were also heuristically evaluated over multi-
ple experiments to yield a reasonable number of anomalies. Using
three autoencoder networks with different compression rates, we
have extracted 191 unique syntax tree anomalies and 54 unique
compiler-induced anomalies.

5.1.3 Final processing of the evaluation set. Using both explicit rep-
resentations of source code and implicit representations of source
code and bytecode, we obtained a total of 375 unique anomalies. Af-
ter a quick manual filtering to remove non-interpretable items, we
presented 145 remaining anomalies to Kotlin language experts for
assessment of their usefulness. We describe the motivation behind
expert assessment and its technique in the next section.

5.2 Assessment of anomalies
5.2.1 Choice of assessment technique. Code anomalies could be
evaluated in several ways: by measuring the performance of the
compiler on the anomalous code, by measuring runtime perfor-
mance of a compiled program that contains anomalous code, or
through expert assessment.

However, there are several important concerns that make per-
formance measurements difficult to use and interpret. We can only
measure influence of syntax tree anomalies on the performance
of the compiler’s parser. It is worth noting that a parser is usually
one of the simplest parts of a compiler, and performance problems
in a compiler usually arise during other compilation stages: type

inference, resolving, or code generation. Thus, running a perfor-
mance evaluation of only a parser would be a shallow evaluation
technique. At other compilation stages, performance of the com-
piler is highly dependent on the environment (e.g. the speed of
type inference depends on the type parameters signature of the
function that is called from an anomalous fragment). Moreover, a
performance problem might be observed in one environment and
not observed in another, and going through the complete variety
of environments is an almost impossible task.

As for compiler-induced anomalies, even though we know the
initial source code and the produced bytecode, it is problematic to
evaluate the performance of the compiler. Data and computation
that are related to a specific anomaly may be ordered differently
within compiler’s internal structure, which would make it very
difficult to pinpoint the specific contribution of the anomalous
code to the overall performance. However, it would be possible to
evaluate performance of the program runtime, because we already
have a corresponding bytecode to run.

A performance measurement would be relevant for assessment
of the anomaly types that cause performance problems, but other
anomaly types exist as well: for example, anomalies that highlight
problems in the programming language design. Such problems can
only be detected by an expert who deeply understands the concepts
of the programming language and the internal structure of the
compiler.

5.2.2 Expert assessment. To cover all the anomaly types, we de-
cided to settle on expert evaluation for assessment of the anomalies.
We have invited the development team of the Kotlin compiler to
serve as experts in our study. The developers of the compiler have
the most comprehensive understanding of the compiler’s internals,
and thus can be capable of attributing individual code constructs to
concrete problems. Such problems include compiler performance,
program runtime performance, and language design. Two people
agreed to volunteer their services as experts.

We asked the experts to evaluate each anomaly, using a five-
point scale from 1 to 5. Evaluation criteria addressed three aspects:
(1) whether the code fragment is typical structurally, (2) whether
the code fragment can become a valuable compiler test, and (3)
whether the code fragment can cause compiler performance issues.
The experts were asked to select the highest rank that will hold a
true statement from the following list:

• Rank 1: very typical code; could not be used as a compiler
test of any kind; does not cause performance issues;

• Rank 2: code with typical architecture patterns; highly un-
likely to be used as a compiler test; highly unlikely to cause
performance issues;

• Rank 3: mostly typical code with rare use of distinctive fea-
tures; could be used as a compiler test, but fragments similar
to this are already used in tests; Unlikely to cause perfor-
mance issues;

• Rank 4: the code comprises atypical combinations of lan-
guage features; could become a valuable compiler test, frag-
ments similar to this are already used in tests; likely to cause
performance issues;

• Rank 5: highly atypical code structurally; will be a unique
compiler test; most likely will cause a performance issue.
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The experts evaluated anomalies together, discussing each anom-
aly to conclusion and providing a collective ranking decision.

We also asked the experts to rank each of the anomaly types that
we obtained on the post-processing step (Section 4.2.3) to assess the
perceived importance of individual types. This ranking ensures that
in future experiments we are able to tune our pipeline to produce
more anomalies that are of interest to the experts.

5.3 Assessment results
Figure 5 presents the results of expert importance assessment for
syntax tree anomalies. 38 out of 91 source code anomalies selected
for evaluation were considered to be important, i.e., helpful, by the
experts.

Table 1 presents assessment results for the anomaly types. The
Rank column contains the expert’s evaluation rank, and the Size
column shows the number of detected anomalies of this type.

Figure 5: Expert evaluation of importance for the discovered
syntax tree anomalies

Bytecode anomalies (54 out of 145) correspond to the properties
of the compiler, rather than source code. It makes such anomalies
difficult to classify, hence we did not assign class labels to them.
Figure 6 presents the results of expert evaluations for compiler-
induced anomalies. 31 out of 54 anomalies were considered helpful.

Based on the results of expert assessment, we have compared the
assessment scores for syntax tree anomalies obtained from two ex-
periments: the first one that used explicit vectors of metrics values
and Local Outlier Factor/Isolation Forest (the explicit experiment)
as well as the second one that used implicit representations based
on N-grams obtained with an autoencoder (the implicit experiment).
The comparison shows that anomalies from both experiments were
rated high, and both approaches are suitable for code anomalies
detection. On the one hand, the use of explicit code metrics sim-
plifies the analysis of the resulting anomalies, and the set of these
metrics can be easily extended to search for new anomaly types. On
the other hand, implicit representations of code are able to capture
properties that could be rather difficult, if possible, to describe with
explicit code metrics.

Figure 6: Expert evaluation of importance for the discovered
compiler-induced anomalies

Table 1: Results of expert assessment of anomaly types,
sorted by importance

Anomaly type Size Rank
1 Delegates 1 5
2 Type arguments 8 5
3 “When” expression 35 5
4 Annotations 2 4
5 Call chains 5 4
6 Enumerations in “when” 2 4
7 “If” expressions 15 4
8 Nested calls 3 4
9 Similar call expressions 88 4
10 Strange code constructs 3 4
11 Assignments 57 3
12 Large methods 2 3
13 Code hierarchy 32 3
14 Function parameters 17 3
15 Multiline strings 27 3
16 “Try-catch” expressions 1 3
17 Arrays or maps 32 2
18 Class references 2 2
19 Concatenations 13 2
20 Lambdas 2 2
21 String literals 2 2
22 Logical expressions 6 2
23 Complex loops 8 2
24 Similar code fragments 2 2
25 “Throw” expressions 2 2
26 Assertions 1 1
27 Empty string literals 2 1
28 Local variables 2 1
29 Nested functions 2 1
30 Type casts 2 1
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5.4 Data availability
The data that supports the findings of this study is openly available1.
An anonymized distribution of the created tools for peer review is
also available2. Upon publication of this paper, we will make the
data and tools available in a GitHub repository and in persistent
scientific archival services.

6 THREATS TO VALIDITY
Our study is subject to several threats to validity and generalizabil-
ity.
External validity. Our dataset was comprised of only open source
projects available on GitHub. This limits our ability to claim that
our list of discovered anomalies is exhaustive, as code of proprietary
projects might contain other anomalies.
Our anomaly detection pipeline was targeted at the Kotlin ecosys-
tem from the very start of the project. We were able to obtain our
results thanks to a combination of several unique factors, notably
including quick growth of the Kotlin open source community, our
ability to get in contact with the compiler development team, and
slightly lower maturity of the compiler, compared to other more
established languages and ecosystems. Considering these unique
factors, we should acknowledge that obtaining similar results for
other programming languages would require building a potentially
sophisticated method from scratch.
Construct validity. Our resulting list of anomalies is ultimately
influenced by our choices regarding the set of metrics, methods for
anomaly detection, and parameters of the algorithms.
Bias of experts. Our ranking of importance for individual anom-
aly types is based on estimates provided by two experts. Such
quantitative estimates based on expert opinion are intrinsically sub-
jective [21]. Moreover, the role of individual biases in such a small
group is particularly high. Finally, our experts are the developers of
Kotlin, who are deeply involved with the compiler internals; thus,
their subjective perception of importance might differ from the
broader group of interested public — for example, from professional
Kotlin developers.

We believe that these threats, while worth noting, do not invali-
date our results or diminish their value. We do not claim that our
methodology is universal or applicable to other languages. Instead,
with this study we unravel a new scope for application of anomaly
detection techniques in software engineering, and demonstrate that
these techniques help to provide actionable insights to language
developers.

7 DISCUSSION
7.1 Syntax tree anomalies
Syntax tree anomalies are code fragments that are not typical in
the Kotlin community. They are either very rare combinations of
code constructs, certain combinations of code constructs repeated
a large number of times, or functions with atypical characteris-
tics, like very large object hierarchy or extensive domain-specific
constructs (Figure 7).

1The dataset used in this study: https://bit.ly/2txCL5q
2 The tools supporting the proposed methods: https://bit.ly/2Sixau4

The detected syntax tree anomalies were divided into three cate-
gories:

(1) Anomalies that correspond to language design issues.
Such anomalies were noted and archived by the Kotlin com-
piler team for further discussion and research. Later such
discussions could lead, for example, to introduction of a new
construct to the language, deprecation of constructs use in
certain cases, extension of the language standard library,
refinement of the reference documentation or the language
specification. Thus, the detected anomalies will be able to
play a role in the development of the programming language.

(2) Anomalies that correspond to cases when some part
of the compiler might work incorrectly or slowly. The
experts considered such anomalies as valuable compiler tests,
and accepted to include them in the compiler’s testing in-
frastructure. They can be used as performance tests for the
compilation stages of type inference and resolving, as type
inference tests for correctness, or as tests for generated byte-
code. For example, the experts noted that some anomalies
highlight various corner cases of the type inference as well as
data flow analysis and can be very useful during refactorings
in these compiler modules. An example of such an anomaly
is presented in Figure 8. This function can act as a good test
for the performance and correctness of the compiler type
inference module, since processing it involves non-trivial
analysis and type inference.

(3) Anomalies that correspond to potential performance
issues of the program’s runtime environment. In such
cases, there may also be some issues with the compiler. For
example, non-optimal code generation, failures, or lack of
some optimizations. Such code fragments can also be used
as compiler tests; more precisely, as performance tests for
the compiled programs.

7.2 Compiler-induced anomalies
Compiler-induced anomalies correspond to cases when a complex
or atypical bytecode was generated by a simple or “normal” syntax
tree (or vice versa, a non-anomalous bytecode was produced from
an anomalous syntax tree).

The detected compiler-induced anomalies were caused by the
following issues:

(1) Non-optimal code generation cases in the compiler that
manifested in some rather exotic code examples. In
such cases, the anomaly can be used as a test for bytecode
generation.

(2) Rather complex functions were inlined in code frag-
ments that were considered abnormal. Such cases have
nothing to do with compiler problems, but could be very use-
ful for developers of libraries and frameworks, because their
API is available to a potentially large number of program-
mers. Detection of function inlining problems could also help
regular developers (i.e. users of the language) to fix perfo-
mance issues in their projects. Figure 9 presents an example
of such an anomaly containing problematic function inlin-
ing: the framework developers wrote a large and complex
function to bind properties with configuration data, which

https://bit.ly/2txCL5q
https://bit.ly/2Sixau4
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Figure 7: An example of atypical, yet valid, code from a Forth implementation written in Kotlin.

was marked “inline”; therefore, its bytecode was copied to
all places where it was called. In this example, the “bind”
function is only called 9 times, but the bytecode is already
very large and complex. This code fragment was not consid-
ered a syntax tree anomaly, but its bytecode was marked as
anomalous, which helped to catch this code fragment.

Among the suspicious code fragments there were several cases
when some of the compiler optimizations worked well, and com-
plex syntax trees were minimized to form a rather simple bytecode.
Surely, such cases are not issues of any kind, but they can neverthe-
less be useful to compiler developers: for example, they can learn
from the successful optimizations and further improve them.

8 CONCLUSION
In this paper we present two kinds of experiments to detect differ-
ent types of code anomalies (syntax tree anomalies and compiler-
induced anomalies), using different approaches both at the code
vectorization and at the anomaly detection stages. As a result, 91
syntax tree anomalies and 54 compiler-induced anomalies were
presented for assessment of importance to the Kotlin compiler de-
velopers. According to the results of the assessment, 32 syntax tree
anomalies and 31 compiler-induced anomalies were considered
useful (they got rank values 4 and 5). Some of these anomalies were
added into the compiler testing infrastructure as performance and
correctness tests for the compiler front-end and back-end; several
anomalies were postponed for further discussion on possible lan-
guage design issues. Based on these results and further discussions
with the Kotlin compiler developers, we believe that the detected
anomalies are useful and valuable for the language development,
and our proposed approach proved itself successful in detection of
various code anomalies.

We outline several directions for future research:

(1) The post-processing step of the pipeline could be automated
(at least to some extent) to provide tools for classification
and labeling of the found anomalies. This would allow us
to focus more on finding new and more interesting types of
anomalies.

(2) The bytecode dataset could be increased (for example, by
creating tools that automatically build projects from GitHub).
At the moment, only a small part of the repositories publish
builds of their projects in the “Releases” GitHub section.
Automatic build tools would provide us with bytecode for
all projects with syntactically and semantically correct code.
With such dataset at hand, we could identify much more
compiler-induced anomalies.

(3) Compiler-induced anomalies could be used to evaluate the
impact of new language features on the compilation process.
This could be implemented as tests that track anomaly scores
of some code examples during the compiler development
process. If the anomaly scores change too much after a spe-
cific change in the compiler code, then such changes should
be analyzed in detail and it should be understood what led
to such an effect.
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Figure 8: An example of a syntax tree anomaly used as a test for performance and correctness of type inference in the compiler

Figure 9: An example of a compiler-induced anomaly highlighing an issue with function inlining
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