Project proposals

Vladimir Kovalenko
Delft University of Technology
The Netherlands
v.v.kovalenko@tudelft.nl

January 30, 2019

Code Reviewer Recommendation

Code review is a software development practice consisting in manual peer re-
view of code changes. The benefits of the process include higher code quality,
increased awareness of technical changes among team members, and smoother
onboarding of newcomers. [1]

These days code reviews in industry are performed with dedicated tools,
such as Gerrit, Phabricator, Crucible, Upsource, and GitHub. These tools fea-
ture interfaces to view and discuss changes, and offer integration with external
instruments, such as issue trackers and static analysis tools.

A prominent direction in evolution of code review tools is utilization of

records of development history for improvement of user experience. Most of
innovation in this area originates in academic research — techniques such as de-
fect prediction [9] are motivated partly by the need to improve the efficiency of
code review.
One of such techniques is reviewer recommendation. Over the last 5-6 years,
this problem had formed an established area in the field of software engineering
research. The general idea of reviewer recommendation is to use records of prior
code changes and reviews to recommend optimal reviewers for a given change.
Exact mechanics vary among implementations. [11, 7, 2, 8, 4, 10] Over the last 3
years, reviewer recommendation algorithms have been introduced in industrial
code review tools, such as GitHub, Gerrit and Upsource.

The two projects described below aim at improving the state of the art in
reviewer recommendation. A successful study on each of the proposed problems
would result in a submission to a major software engineering research venue.

Candidates are expected to have decent programming skills, a good com-
mand of English, and basic knowledge of statistics. Experience in academic or
technical writing is not necessary but appreciated.



Project 1: dependency information for reviewer
recommendation

Information about code dependencies is an important point that developers
consider during selection of code reviewers. [5] However, no existing algorithms
for reviewer recommendation make use of this information.

The goal of this project is to investigate whether dependency information is a
valuable source of input data for reviewer recommendation algorithms. We will
use one or several of the state-of-the-art reviewer recommendation algorithms
as a baseline, and evaluate the effect of adding dependency information on
recommendation accuracy.

Preliminary research questions:

e Does additional information about code dependencies improve accuracy
of reviewer recommendations?

e What is the best way to aggregate dependency information for usage in
reviewer recommendation algorithms?

Project 2: optimizing RR for metrics beyond ac-
curacy

Existing reviewer recommendation algorithms are technically evaluated as pre-
diction models: the target metric is similarity of algorithms’ output to actual
historical records of reviewers. While such evaluation is a common technique in
the broader field of recommender systems, focus on accuracy poses a potential
threat to maintainbility of the underlying codebase: due to an effect similar to
the filter bubble [6], existing reviewer recommendation approaches endorse deep
division of code ownership among team members, which has a negative effect
on maintainability of code (see bus factor [3]).

The goal of this project is to build a reviewer recommendation system that
would promote collective ownership of code in teams, rather than “predict”
reviewers. We will evaluate the system through modeling the reviewer selection
process and estimating its potential impact on choices of reviewers made by
users of the recommender system.

Preliminary research questions:

e Is it possible to endorse collective code ownership via reviewer recommen-
dations?

e How closely should the users follow the recommendations for such system
to function in the long run?



References

[1]

BACCHELLI, A., AND BIRD, C. Expectations, outcomes, and challenges of
modern code review. In Proceedings of the 2013 international conference
on software engineering (2013), IEEE Press, pp. 712-721.

BALACHANDRAN, V. Reducing human effort and improving quality in peer
code reviews using automatic static analysis and reviewer recommendation.
In Proceedings of the 2013 International Conference on Software Engineer-
ing (2013), IEEE Press, pp. 931-940.

COSENTINO, V., 1ZQUIERDO, J. L. C., AND CABOT, J. Assessing the bus
factor of git repositories. In Software Analysis, Evolution and Reengineering
(SANER), 2015 IEEE 22nd International Conference on (2015), IEEE,
pp- 499-503.

JEONG, G., KM, S., ZIMMERMANN, T., AND Y1, K. Improving code
review by predicting reviewers and acceptance of patches. Research on
software analysis for error-free computing center Tech-Memo (ROSAEC
MEMO 2009-006) (2009), 1-18.

KOVALENKO, V., TINTAREV, N., PasyNkov, E., BIRD, C., AND BAc-
CHELLI, A. Does reviewer recommendation help developers? IEEE Trans-
actions on Software Engineering (2018).

Nguven, T. T., Hut, P.-M., HARPER, F. M., TERVEEN, L., AND KON-
STAN, J. A. Exploring the filter bubble: the effect of using recommender
systems on content diversity. In Proceedings of the 23rd international con-

ference on World wide web (2014), ACM, pp. 677-686.

Ouni, A., Kura, R. G., AND INOUE, K. Search-based peer reviewers
recommendation in modern code review. In Software Maintenance and
Evolution (ICSME), 2016 IEEE International Conference on (2016), IEEE,
pp. 367-377.

THONGTANUNAM, P., KurLaA, R. G., CruUzZ, A. E. C., YOSHIDA, N., AND
ImbA, H. Improving code review effectiveness through reviewer recommen-
dations. In Proceedings of the 7th International Workshop on Cooperative
and Human Aspects of Software Engineering (2014), ACM, pp. 119-122.

WaHONO, R. S. A systematic literature review of software defect pre-
diction: research trends, datasets, methods and frameworks. Journal of
Software Engineering 1, 1 (2015), 1-16.

Yu, Y., WANG, H., YIN, G., AND WANG, T. Reviewer recommendation
for pull-requests in github: What can we learn from code review and bug
assignment? Information and Software Technology 74 (2016), 204—-218.

ZANJANI, M. B., KAcGDI, H., AND BIRD, C. Automatically recommending
peer reviewers in modern code review. I[IEEE Transactions on Software
Engineering 42, 6 (2016), 530-543.



