
Multimodal Recommendation of Messenger Channels
Ekaterina Koshchenko

ekaterina.koshchenko@jetbrains.com
JetBrains Research

Amsterdam, The Netherlands

Egor Klimov
egor.klimov@jetbrains.com

JetBrains Research
Saint Petersburg, Russia

Vladimir Kovalenko
vladimir.kovalenko@jetbrains.com

JetBrains Research
Amsterdam, The Netherlands

ABSTRACT
Collaboration platforms, such as GitHub and Slack, are a vital in-
strument in the day-to-day routine of software engineering teams.
The data stored in these platforms has a significant value for data-
driven methods that assist with decision-making and help improve
software quality. However, the distribution of this data across dif-
ferent platforms leads to the fact that combining it is a very time-
consuming process. Most existing algorithms for socio-technical
assistance, such as recommendation systems, are based only on data
directly related to the purpose of the algorithms, often originating
from a single system.

In this work, we explore the capabilities of a multimodal recom-
mendation system in the context of software engineering. Using
records of interaction between employees in a software company in
messenger channels and repositories, as well as the organizational
structure, we build several channel recommendation models for a
software engineering collaboration platform, and compare them on
historical data. In addition, we implement a channel recommenda-
tion bot and assess the quality of recommendations from the best
models with a user study.

We find that the multimodal recommender yields better rec-
ommendations than unimodal baselines, allows to mitigate the
overfitting problem, and helps to deal with cold start. Our find-
ings suggest that the multimodal approach is promising for other
recommendation problems in software engineering.
ACM Reference Format:
Ekaterina Koshchenko, Egor Klimov, and Vladimir Kovalenko. 2022. Mul-
timodal Recommendation of Messenger Channels. In Proceedings of ACM
Conference (Conference’17). ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/3524842.3528441

1 INTRODUCTION
These days, software professionals working in organizations use
various collaboration platforms almost daily (messengers, version
control system (VCS) hosting platforms, task trackers, etc.) [1].
These platforms record and keep a lot of information describing
how users interact with each other and various platform entities.
Combining such data can provide a good representation of social
and technical connections within organizations [2]. These represen-
tations are used in techniques and tools that support collaborative

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9303-4/22/05. . . $15.00
https://doi.org/10.1145/3524842.3528441

work in teams, such as automated bug assignment tools [3] or re-
viewer recommendation algorithms [4]. We collectively refer to
such techniques as socio-technical assistance techniques.

Expert recommendation systems [5], such as code reviewer rec-
ommendation [4], are an example of socio-technical assistance
algorithms. Reviewers have a direct impact on the quality of the
code, as well as the programmers’ growth [6]. Moreover, proper
selection of reviewers is vital for maintaining the pace of devel-
opment [4] Another application of socio-technical assistance al-
gorithms is maintaining a healthy bus factor [7, 8] by keeping
individual contributors from becoming indispensable [9].

Another application for socio-technical assistance algorithms
recommendation of channels in text messengers. A channel is a
group chat where all communication is focused on specific projects,
topics, or teams. Slack [10] is a popular corporate messenger fea-
turing the channels model. Channels help to focus communication
on specific topics in one place [11]. Although the channels model is
quite convenient [12], there is a significant flaw: users are limited
by the channels they already know about. Thus, it is hard for the
users to look outside their “neighbouring” scope. Automatic chan-
nel recommendation systems [13] can address this issue. Relevant
and diverse recommendations increase employees’ awareness of
each other’s projects, and stimulate interactions between teams.

Intuitively, the more data about employees and their commu-
nication we use in those algorithms, the better their performance.
However, for a long time different activities were scattered across
many independent tools. Here is an example of such arrangement
in a hypothetical team: CI builds are run in Jenkins1, documentation
is stored in Confluence, code is reviewed in Upsource, issues are
tracked in Jira, developers communicate through Slack.

Such arrangement leads to the information being scattered across
different platforms. This makes it much harder to collect, link, and
process the data to use it to enhance the tools and processes.

Taking into account the efforts to collect and link individual
data types, an increase in the number of individual tools leads to
a quadratic growth of data collection complexity. It comes as no
surprise that most research on socio-technical assistance algorithms
focuses on one type of data [14]. For example, Slack’s description of
their channel recommendation system [13] suggests that they only
use information about the time users spend in channels (reading and
writing). One of the possible improvements over this would be to
use organization’s structure (hierarchy). Employees with the same
role and similar projects may be interested in the same channels.

Modern developer tools combine functionalities of multiple tools
into one platform. Examples of this trend include tools like Github
Enterprise or Space [15]. These tools combine the functionality of
several other tools, such as VCS hosting, code review tool, task
1This and other names in this list are mainstream collaboration tools in the software
industry.

https://doi.org/10.1145/3524842.3528441
https://doi.org/10.1145/3524842.3528441
https://doi.org/10.1145/3524842.3528441

Conference’17, July 2017, Washington, DC, USA Ekaterina Koshchenko, Egor Klimov, and Vladimir Kovalenko

tracker, calendar, messenger, or team directory, in a single tool.
In these combined tools, various sorts of records of collaboration
within teams are available in the same environment. This in turn
makes it easier to process this data jointly, and enables multimodal
approaches to socio-technical support systems.

In this work, we focus on multimodal recommendation of chan-
nels for messenger workspaces. We build a multimodal recommen-
dation system based on combining three types of data: channels
activity, VCS history, and organizational structure, sourced from
the internal systems of JetBrains, a vendor of software engineer-
ing tools. We evaluate the system on historical data, build a Space
bot around it, and compare it against best unimodal baseline ap-
proaches based on user feedback. The two primary contributions
of this work are:

• We describe a channel recommendation algorithm working
with three types of data: channels (their subscribers and
messages grouped by threads), technical repositories (au-
thors, commits), and organization’s structure (roles, teams
and management).

• We demonstrate that the multimodal recommender system
provides recommendations of higher quality.

We conclude that multimodal data is of great value for the channel
recommendation problem, and argue that it might also be beneficial
for other recommendation tasks in software engineering and for
other socio-technical assistance techniques.We share the implemen-
tation of the models and the evaluation code in the reproduction
package2.

2 BACKGROUND AND MOTIVATION
2.1 Recommender Systems in Software

Engineering
Software engineering involves rapid decision-making. The engi-
neers and their colleagues make diverse decisions at many points in
their everyday activities. Examples include choosing the debugging
strategy for a new issue, selecting the proper library method to call,
or selecting the right colleague to ask for help or reassign a task to.
While often straightforward and instant, some of these decisions
are in fact of great importance: for example, selecting the right
reviewers for new changesets is vital for maintaining the pace of
development [4]. The research community came up with diverse
techniques and tools to assist the engineering teams with decision-
making in their everyday work, and, more generally, to provide
them with the information relevant in their current context. Collec-
tively, these techniques and tools are referred to as Recommender
Systems in Software Engineering (RSSE) [16, 17].

Examples of RSSE include code recommendation and code com-
pletion systems [18, 19], expert recommendation engines, e.g. for
bug assignees [3, 20] or code reviewers [4], and systems for recom-
mendation of relevant external resources, such as libraries [21] or
discussions [22].

Recommendation algorithms rely on the variety of types of data
available in the engineering tools. Recommendations can be pro-
duced based on the history of technical contributions, such as code
edits [4, 20], and the non-technical interactions, such as issue reas-
signment sequences [23] or discussions in natural language [24].

Depending on the context and the task, quality of recommenda-
tions can be evaluated by comparing their output with historical
user actions [4], by observing the impact of the recommenders on
users’ behavior [25], or by modeling the consequences of a potential
user selecting the recommended option [7].

2.2 Combining multiple data sources
Some RSSE techniques, as well as recommender systems in other do-
mains, rely on data in various forms, often originating from different
systems, or multimodal data. For example, a developer recommen-
dation system by Xia et al. [26] utilizes both the textual features of
the bug report and the records of developers’ participation; Sulun
et al. [27] propose a method for reviewer recommendation based
on traceability graphs, which are built from connections between
artifacts of multiple types, stored in different systems. In the con-
text of RSSE, multimodal data is valuable because the developers
and other software professionals normally use more than one tool,
which means that all aspects of their preferences generally cannot
be covered by, and retrieved from, the data in a single system.

Multimodal recommenders are, however, harder to build and
maintain in practical scenarios. Combining data from multiple sys-
tems to feed into a multimodal recommender implies implementing
and maintaining multiple data retrieval modules. Moreover, linking
the data from multiple systems can be a challenge in itself [28].

At the same time, modern software engineering platforms, such
as Github1, Gitlab, Azure DevOps, and Space, combine the function-
ality of multiple tools — VCS hosting, issue tracker, agile boards,
CI engine, code review system — in a single tool. This means that
in such systems the data of different modalities is available in the
same environment, which eliminates the challenge with combin-
ing the data from multiple systems. The emergence of this “swiss
knife” tool model suggests that multimodal approaches to recom-
mender systems and to other data-driven techniques for software
engineering tools are now more feasible in practice than before.

2.3 Channel recommendations
The focus of this work is multimodal recommendation of messen-
ger channels. We choose the problem of channel recommendation
to tackle with a multimodal approach for two primary reasons.
First, the structure of channels in companies’ internal messengers
is more often defined by convention rather that by a formalized
process. This means that the history of messages in these channels
is harder to link to structured data, such as VCS history, which in
turn suggests that efficient recommendation of channels is likely
to require combining more than one data source. Second, corpo-
rate messengers have only been widespread in engineering teams
relatively recently. While chat applications have been the context
for several existing studies [29–32], to our knowledge no scholarly
research exists on approaches to recommendation of channels, with
no studies to our knowledge focusing on this problem in the context
of software engineering. We seek to make a dent in this literature
gap with this study.

2.3.1 Channel recommendation systems. A channel recommenda-
tion system in text messengers is a model that, based on information
available about the user, produces suggestions for channels they

Multimodal Recommendation of Messenger Channels Conference’17, July 2017, Washington, DC, USA

might be interested in. In larger organizations, users of collabora-
tion platforms cannot always be aware of all potentially interesting
messenger channels. Relevant and diverse automatic recommenda-
tion of channels can aid software engineering professionals by:

• Reducing the time that new users spend to find channels
that are related to their work and interests;

• Stimulating cross-team interactions;
• Helping employees to get more aware each other’s interests
and expertise;

• Raising awareness of each other’s projects, which in turn
can facilitate knowledge sharing.

Similarly to how traditional recommender systems leverage im-
plicit information about the users’ preferences [33], the primary
source of data for channel recommendation systems is records of
users’ membership and communication in channels. In this study,
we use two additional data modalities: version control repositories
and organizational structure. VCS repositories contain technical
artifacts of engineers’ work. Version history also contains traces
of technical collaboration of engineers, e.g. when two people work
on the same feature. Organizational structure represents the roles
and the hierarchy in the company. It includes teams and team
memberships, roles and management connections in the company.
In combination with the channel activity data, this information
can help identify role-related patterns, such as “the chat for UX
designers to help each other out and share memes”.

Including the data on VCS history and organizational structure
into channel recommendation systems might help the models make
more relevant and diverse recommendations. Moreover, it might
help with the cold start problem [34]. New users barely have any
activity in existing channels, which means that it is not possible to
generate recommendations for them based on their activity. How-
ever, new users definitely have a position in the company (defined
by, for example, their team and role), and they might already have
some repositories with source code. Such additional data, already
reflected in internal systems, can help the recommendation models
deal with the cold start problem, providing new users with relevant
recommendations.

2.3.2 Channel recommendations in Slack. The most recent avail-
able description of a channel recommendation algorithm is the one
published by Slack in 2016 [13]. The algorithm is a variation of
item-based collaborative filtering [35]. Its overview is presented in
Figure 1. In this approach, the channel-user relevance matrix (𝑀𝑟𝑒𝑙)
is based on an approximation of time spent in channels based on
read and write activity. As not all users are active in all channels,
the matrix built based on this approximation is incomplete. The
goal of the algorithm is to fill the whole matrix and use the new
relevant scores for ranking of recommendations.

Cosine
Similarity

0.2ch1

ch2

ch3

us1 us2 us3

Mrel

ch1

ch2

ch3

ch1 ch2 ch3

Msim

1.0

kNN1.0

1.00.0

0.0

0.15

0.150.72

0.720.7 0.6

0.6 0.5

0.2

Figure 1: Slack algorithm pipeline.

First of all, the Slack algorithm builds a similarity matrix for
channels (𝑀𝑠𝑖𝑚) that contains cosine similarity scores for respec-
tive channel representations. These representations are the rows
in the channel-user relevance matrix that are filled with zeros for
unknown values.

𝑀𝑠𝑖𝑚(𝑐ℎ1, 𝑐ℎ2) =
𝐶1 ×𝐶2

| |𝐶1 | | · | |𝐶2 | |
where 𝐶𝑖 — row in channel-user relevance matrix corresponding
to 𝑐ℎ𝑖 (𝑀𝑟𝑒𝑙 (𝑐ℎ𝑖)).

After that, for each channel the algorithm finds the most similar
channels based on the similarity score. Using k-neighbours, they
fill empty values in the initial matrix𝑀𝑟𝑒𝑙 with the average of the
similarity scores between the target channel and the channels most
similar to it, weighted by their relevance to the target user.

𝑀𝑟𝑒𝑙 (𝑐ℎ,𝑢𝑠) =

∑
𝑖∈[𝑖1,...,𝑖𝑘]

𝑀𝑠𝑖𝑚(𝑐ℎ, 𝑐ℎ𝑖) ·𝑀𝑟𝑒𝑙 (𝑐ℎ𝑖 , 𝑢𝑠)∑
𝑖∈[𝑖1,...,𝑖𝑘]

𝑀𝑠𝑖𝑚(𝑐ℎ, 𝑐ℎ𝑖)

where [𝑖1, .., 𝑖𝑘] is a set of indices of the 𝑘 channels most similar to
the target.

In this work, we implement the Slack algorithm to use it as a
baseline.

3 METHODOLOGY
3.1 Research Questions
We build this study around two following research questions:

• RQ1: How does combining different types of data influence
the performance of channel recommendation algorithms?

• RQ2: Do users find the suggestions generated by recommen-
dation algorithms valuable?

To answer these questions, we collect the data of three different
types (channels, repositories, organizational structure) from the in-
ternal systems of JetBrains, a medium-sized software development
company. After that, we train several unimodal recommendation
algorithms and one unifying multimodal algorithm, and conduct
two types of experiments. First, we test the performance of the
algorithms on historical data (Section 5.2.1) to find the best uni-
modal algorithms. After that, we combine the statistics that power
these algorithms in a multimodal recommendation model. Finally,
to determine the best of unimodal and the multimodal methods, we
conduct an assessment of the generated recommendations by the
users — employers of JetBrains (Section 5.3).

3.2 Data
Channel activity data is instrumental for the channel recommenda-
tion task. In addition, we decided to include data on organizational
structure, since this information is available for each employee
from the beginning of their work at the company. Finally, since
JetBrains is a software company, contributions to source code are a
significant part of work for most of employees, so we include VCS
history as well. In this section, we describe each of the modalities
and discuss challenges with mining and processing the data.

3.2.1 Overview of the data modalities.
Channels. The first data modality that we consider is channels.
Each channel is a set of messages. Some messages are grouped

Conference’17, July 2017, Washington, DC, USA Ekaterina Koshchenko, Egor Klimov, and Vladimir Kovalenko

Messages, desctiption,

subscribers, etc

Commits, description,

contributors, etc.

Role, team, manager,

etc

User data

Repositories based
relevance

Channels based
relevance

Structure based
relevance

Repositories

User-channel relevance statistics

Channels Structure

Unimodal algorithms

Multimodal algorithm

Raw data

History

testing

Best

unimodal

algorithm

Assessors
testing

Research Questions 1,2

Figure 2: Overview of this study.

together in threads. Additionally, a list of channel subscribers, name,
and (optionally) description are available for every channel. This
information is the basis for the channel recommendation model.
Organizational Structure. The next data modality is the struc-
ture of the organization — team memberships and roles. It is repre-
sented by the role of each employee in the company (e.g. “senior
researcher”), the identifier of their manager and team, and informa-
tion about whether the employee is a formal lead of their team. An
employee can have more than one membership, e.g. someone can
have the role of Researcher in team A and the role of Team Lead
in team B. Information about user’s memberships in the company
can yield recommendations which are focused on the similarity of
the target user’s and channel subscribers’ positions in the company
hierarchy, thus possibly mitigating the cold start problem.
Technical repositories. The final modality is the history of ver-
sion control repositories. For each repository we retrieve its name,
description, list of contributors, and commit history. This informa-
tion provides an understanding of the professional interests and
expertise of users and historical data on their collaboration with col-
leagues that may not be reflected in other modalities. This modality,
too, may assist with the diversity of recommendations.

Figure 3: Examples of collected data.

3.2.2 Data sources. The data is obtained from three systems for
collaborative software development:

(1) Space, a unified platform for the entire software develop-
ment pipeline and team collaboration. For this study, this

system is a source of organizational structure information,
channel activity data, and version control repositories;

(2) Slack, a business communication platform [10]. Slack is an
additional source of channel activity data in our study;

(3) GitHub, a source code management system that features
issue tracking, continuous integration, and code review [36].
GitHub is an additional source of version control data.

All these systems contain personal data of developers and sensi-
tive information internal to the company. Processing this data is
associated with the following risks and challenges.

Privacy concerns. A business communication platform may con-
tain not only work-related information, but also the users’ personal
information and discussions. To minimize the privacy risk, we only
use public data, i.e. the data that is accessible to anyone in the
organization, in this study.

Information security. To minimize the risk of unauthorized access
to information, we use the absoluteminimumof data that is required
for the study. For example, we do not access or store the source code
of private projects, and we do not store the contents of blobs in the
repositories. We process all data in a secure cloud environment with
minimal access rights: the authors of this study did not even have a
technical ability to download raw data. Finally, all data processing
pipelines were reviewed by information security experts.

Ethical concerns. Records of developers’ activity can potentially
be used to analyze productivity and other work qualities of the
developers [37]. Using data to assess productivity can potentially
harm the employees. This work is not dedicated to any personal
qualities or productivity of developers. To minimize the ethical
risks and prevent potential biases, we only consider quantitative
information about threads and messages. We do not process or store
the contents of threads and messages (e.g. text or attachments).

3.2.3 Data mining. After collecting data from the different sources,
we link and filter it for further use. Table 1 presents some general
statistics about the collected data of each modality.

Channel activity. There are two sources of channel activity
data in our study: Slack and Space. For Slack, we use its built-in
functionality to download an archive of public channels [38]. It
contains messages for each channel and general channel statistics:
the number of messages and subscribers. For Space, we use the API
to retrieve the channel activity data. For each message we store its
author and timestamp. Additionally, a list of channel subscribers,
its name and description are available.

To combine the data from the two sources, we match users’
accounts via their email addresses. Also, we filter out the channels
that were inactive for the last three months and channels with less
than three subscribers.

Organizational structure. The source of information about the
organizational structure is Space. The organizational structure in
Space is represented with memberships. Each membership includes
the manager, the team and the role. For each user, a history of
previous roles in the company is also available. In addition, users’
known emails are available to retrieve via an API. Space is a single
source of information about the organizational structure in our
study, so there is no need to combine this data with other systems,
like we do for other modalities.

Multimodal Recommendation of Messenger Channels Conference’17, July 2017, Washington, DC, USA

Table 1: Data description

Organization’s Structure
Number of employees ∼ 2000
Number of teams ∼300
Average number of employees in a team 9

Channels
Number of Space channels ∼ 150
Average number of Space subscribers 45
Number of Slack channels ∼ 300
Average number of Slack subscribers 88
Historical depth 6 months

Technical Repositories
Number of Space repositories ∼ 2000
Average number of Space contributors 10
Number of GitHub repositories ∼ 600
Average number of GitHub contributors 20

Technical repositories. There are two sources of the version
control repositories: GitHub and Space. Information about projects
and repositories hosted in Space is available via the API. All infor-
mation from GitHub is available via its HTTP API [39].

To match Space and GitHub data, we use users’ emails specified
in both platforms. One issue with mining the repositories data
was that some repositories existed both at Space and GitHub as
mirrors. To remove such duplicates, we compared the hashes of
recent commits for all pairs of repositories and filtered out the ones
with at least one matching commit.

Figure 4 presents an overview of the data collection and process-
ing pipeline. Figure 3 shows examples of Json files with some of
the collected data.

SpaceSlack GitHub

Organization's
structure modality

Match GitHub and
Space accounts

Remove duplicates
by commits

Mapping

Collect contributors

Match Slack and
Space accounts

Remove inactive
channels

Mapping

Collect threads

Channels
modality

Repositories

modality

Space public

channels

Space
repositories

GitHub
repositories

Slack public

channels

Space
memberships

Figure 4: Data pipeline.

3.3 Experiment setup
To answer the research questions, we build several models based
strictly on channel activity data and related statistics. We also build

several models that are based on statistics from another modality
(repositories or structure). However, these models also use informa-
tion about channel subscribers, which is essential in the channel
recommendation task. Since these methods mostly rely on statistics
from one modality, we still refer to them as unimodal methods.
Finally, we use the statistics collected for all three modalities to
build a multimodal channel recommendation system. We detail the
statistics and the recommendation methods in in Section 4.

We use two types of experiments to evaluate constructed models:
history testing and user assessment. We use history testing during
the training process to get a preliminary evaluation of the models,
and also to select the best models for further analysis. To make
conclusions on the systems’ performance and to answer research
questions, we conduct an assessment of the recommendations by
the users.

3.3.1 History Testing. For historical evaluation, we split the whole
dataset into "train" and "test" parts. The test part includes the last
3 channels each user has subscribed to. All other channels are left
for training. The goal of the recommendation models is to generate
3 suggestions for each user. The measure of performance is the
predictive ability of the model, measured out in precision and ROC
AUC. We detail the historical experiment in Section 5.1.1.

3.3.2 User evaluation. The user evaluation is vital to assess the real-
world performance of the models. In addition, it shows howwell the
recommendation algorithms are suited for different types of users
(e.g. depending on their role or overall activity in chats).To conduct
this experiment, we created a recommendation bot in Space and
asked JetBrains employees to use it and assess the recommendations.
In total, there were over 70 participants of various different roles
and responsibilities (e.g. programmers, technical writers, managers),
experience, activity levels (e.g. contributed into 10+ repositories,
or 1-3 repositories). We provide the details about the bot and the
experiment in Section 5.1.2.

4 CHANNEL RECOMMENDATION
Figure 2 presents a step-by-step overview of this study. After creat-
ing the datasets containing all the information about users, channels,
repositories and organization’s structure, we extracted various sta-
tistics (Section 4.1) characterizing relevance of the existing channels
to all the users. By using different combinations of these statistics,
we build unimodal channel recommendation models we mention
in Section 3.3. History testing of these models allowed us to choose
the best unimodal algorithms and statistics they were based on.

After training a multimodal model built on the performing best
in history testing, we compare this method with the best unimodal
algorithm and a random recommender with user assessments (Sec-
tion 5.3). With a recommender bot we describe in Section 5.1, the
users at JetBrains provided us with feedback on quality of the gen-
erated channels, which allowed us to answer the research questions
(Section 3.1).

In this section, we detail the statistics and the mechanics of the
recommendation models.

Conference’17, July 2017, Washington, DC, USA Ekaterina Koshchenko, Egor Klimov, and Vladimir Kovalenko

4.1 Statistics
In this subsection, we describe the statistics collected from the data
on channels, repositories, and organizationl structure to be later
fed into various channel recommendation algorithms. Notably, all
these statistics are not only applicable to channel recommendation
problem but can also be reused in other socio-technical assistance
methods, as their performance in the recommendation models sug-
gests that they represent the affinity of developers and various
entities to each other. For example, one could reuse repositories-
related statistics (e.g. us2rep_col in Section 4.1.1) in a reviewer
recommendation system.

4.1.1 User2Item interaction statistics. User-to-item statistics rep-
resent interactions between users and different items (channels or
repositories) via relevance matrices. For each item, we select sev-
eral levels of activity to calculate the statistics on. These levels are
logically nested into each other: for example, one cannot become a
collaborator to a repository without making changes to some files.

Channels. The channel statistics describe how users interact
with channels on each of the three levels of detail: subscription,
threads and messages. Channel statistics can be used as factors in
some unimodal recommendation systems, such as matrix factoriza-
tion (Section 4.2.4).
us2ch_sub, subscription-level statistics, represent whether the user
𝑢𝑠 is subscribed to the channel 𝑐ℎ. These statistics only contain 0s
and 1s. More formally,

𝑢𝑠2𝑐ℎ_𝑠𝑢𝑏 (𝑢𝑠, 𝑐ℎ) = 𝑢𝑠 ∈ 𝐹 (𝑐ℎ),

where 𝐹 (𝑐ℎ) is the set of subscribers for channel 𝑐ℎ.
us2ch_thr, thread-level statistics, represent the fraction of threads
in the channel that the user has participated in (i.e. wrote at least
one message to the thread).

𝑢𝑠2𝑐ℎ_𝑡ℎ𝑟_[𝑑𝑎𝑡𝑒] (𝑢𝑠, 𝑐ℎ) = (𝑢𝑠 ∈ 𝐹 (𝑐ℎ)) · |𝑇 (𝑢𝑠,𝑐ℎ,𝑑𝑎𝑡𝑒) |
|𝑇 (𝑐ℎ,𝑑𝑎𝑡𝑒) | ,

where𝑇 (𝑐ℎ, 𝑑𝑎𝑡𝑒) is the list of threads in the channel with messages
after certain 𝑑𝑎𝑡𝑒 , 𝑇 (𝑢𝑠, 𝑐ℎ, 𝑑𝑎𝑡𝑒) are threads that user has posted
to after certain 𝑑𝑎𝑡𝑒 , [𝑑𝑎𝑡𝑒] is the starting date to consider in the
calculation.
us2ch_mes, message-level statistics, represent the fraction 𝑔1 of
messages the user has written in each thread of the channel.

𝑢𝑠2𝑐ℎ_𝑚𝑒𝑠_[𝑑𝑎𝑡𝑒] (𝑢𝑠, 𝑐ℎ) = (𝑢𝑠 ∈ 𝐹 (𝑐ℎ)) · 𝐺 (𝑢𝑠,𝑑𝑎𝑡𝑒)
|𝑇 (𝑐ℎ,𝑑𝑎𝑡𝑒) |

𝐺 (𝑢𝑠, 𝑑𝑎𝑡𝑒) =
∑

𝑡ℎ𝑟 ∈𝑇 (𝑢𝑠,𝑐ℎ,𝑑𝑎𝑡𝑒)

|𝑀𝑒𝑠 (𝑢𝑠, 𝑡ℎ𝑟, 𝑑𝑎𝑡𝑒) |
|𝑀𝑒𝑠 (𝑡ℎ𝑟, 𝑑𝑎𝑡𝑒) |

where 𝑀𝑒𝑠 (𝑡ℎ𝑟, 𝑑𝑎𝑡𝑒) are all messages in the thread since 𝑑𝑎𝑡𝑒 ,
𝑀𝑒𝑠 (𝑢𝑠, 𝑡ℎ𝑟, 𝑑𝑎𝑡𝑒) are messages that the user wrote to the thread
since 𝑑𝑎𝑡𝑒 .

Repositories. We use two statistics representing users’ inter-
actions with code repositories on the level of collaboration and
individual files. Repository statistics can be further applied as fac-
tors in matrix factorization based algorithms by combining user2rep
scores for all channel subscribers.
us2rep_col, collaboration-level statistics, represent whether a user
is one of a repository collaborators, i.e. if they authored any commits
in this repository. This statistic only contains 0s and 1s.

𝑢𝑠2𝑟𝑒𝑝_𝑐𝑜𝑙 (𝑢𝑠, 𝑟𝑒𝑝) = 𝑢𝑠 ∈ 𝐶 (𝑟𝑒𝑝),

where 𝐶 (𝑟𝑒𝑝) is the set of the repository’s collaborators.
us2rep_file, file changes level statistics, represent the fraction 𝑔2
of files on each branch of the repository that the user has changed.

𝑢𝑠2𝑟𝑒𝑝_𝑓 𝑖𝑙𝑒 (𝑢𝑠, 𝑟𝑒𝑝) = (𝑢𝑠 ∈ 𝐶 (𝑟𝑒𝑝)) ·

∑
𝑏𝑟∈𝐵𝑟 (𝑢𝑠,𝑟𝑒𝑝)

𝑔2 (𝑢𝑠,𝑏𝑟)

|𝐵𝑟 (𝑟𝑒𝑝) |

𝑔2 (𝑢𝑠, 𝑏𝑟) = |𝐹 (𝑢𝑠, 𝑏𝑟) |
|𝐹 (𝑏𝑟) | ,

where 𝐵𝑟 (𝑟𝑒𝑝) are all branches in the repository, 𝐵𝑟 (𝑢𝑠, 𝑟𝑒𝑝) are
branches that the user has committed to, 𝐹 (𝑏𝑟) are all files on the
branch, 𝐹 (𝑢𝑠, 𝑏𝑟) are files that the user has changed in at least one
commit reachable from the branch.

4.1.2 User2User Interactions. User-to-user statistics represent simi-
larities between users based on one of the data modalities: channels,
repositories or structure. Similarly to user2item statistics, here for
each modality we build users’ similarity matrices on different levels
of interaction. Similarly to how, for example, the word2vec embed-
ding model [40] specifies “target” and “context” roles for words, we
distinguish between the "target user" and a "colleague". The target
user is the one we are going to produce recommendations for. A
colleague is some other user whose information on their interac-
tions with items we are going to use to find patterns that might
help to make predictions for the target user. We use the user2user
statistics to build user-based recommendation systems, such as user
aggregation based algorithms (Section 4.2.1).

Channels. The channel statistics represent the similarity of
users to each other based on their interaction in channels on three
levels, similarly to user2ch statistics. Later, these scores are averaged
among all the channel followers (as colleagues), to determine the
relevance score of the channel to the target user.
us2us_sub, subscription-level statistics, represent the ratio of tar-
get user’s and colleague’s common subscriptions 𝑆 (𝑢𝑠, 𝑐𝑜𝑙) to the
number of the target user’s channels subscriptions.

𝑢𝑠2𝑢𝑠_𝑠𝑢𝑏 (𝑢𝑠, 𝑐𝑜𝑙) = |𝑆 (𝑢𝑠, 𝑐𝑜𝑙) |
|𝑆 (𝑢𝑠) |

𝑆 (𝑢𝑠, 𝑐𝑜𝑙) = 𝑆 (𝑢𝑠) ∩ 𝑆 (𝑐𝑜𝑙),
where 𝑆 (𝑢𝑠) are channels that user is subscribed to.
us2us_thr, thread-level statistics, represent the ratio 𝑔3 of threads
in each common channel that both users have participated in
𝑇 (𝑢𝑠, 𝑐𝑜𝑙, 𝑐ℎ) to the target user’s threads.

𝑢𝑠2𝑢𝑠_𝑡ℎ𝑟_[𝑑𝑎𝑡𝑒] (𝑢𝑠, 𝑐𝑜𝑙) =

∑
𝑐ℎ∈𝑆 (𝑢𝑠,𝑐𝑜𝑙)

𝑔3 (𝑢𝑠,𝑐𝑜𝑙,𝑐ℎ,𝑑𝑎𝑡𝑒)

|𝑆 (𝑢𝑠) |

𝑔3 (𝑢𝑠, 𝑐𝑜𝑙, 𝑐ℎ, 𝑑𝑎𝑡𝑒) = |𝑇 (𝑢𝑠, 𝑐𝑜𝑙, 𝑐ℎ, 𝑑𝑎𝑡𝑒) |
|𝑇 (𝑢𝑠, 𝑐ℎ, 𝑑𝑎𝑡𝑒) |

𝑇 (𝑢𝑠, 𝑐𝑜𝑙, 𝑐ℎ, 𝑑𝑎𝑡𝑒) = 𝑇 (𝑢𝑠, 𝑐ℎ, 𝑑𝑎𝑡𝑒) ∩𝑇 (𝑐𝑜𝑙, 𝑐ℎ, 𝑑𝑎𝑡𝑒)
us2us_mes, message-level statistics, represent the fraction 𝑔4 of
messages two users have written in each shared thread of all their
common channels.

𝑢𝑠2𝑢𝑠_𝑚𝑒𝑠_[𝑑𝑎𝑡𝑒] (𝑢𝑠, 𝑐𝑜𝑙) =

∑
𝑐ℎ∈𝑆 (𝑢𝑠,𝑐𝑜𝑙)

𝐺 (𝑢𝑠,𝑐𝑜𝑙,𝑑𝑎𝑡𝑒)
|𝑇 (𝑢𝑠,𝑐ℎ,𝑑𝑎𝑡𝑒) |

|𝑆 (𝑢𝑠) |

𝐺 (𝑢𝑠, 𝑐𝑜𝑙, 𝑑𝑎𝑡𝑒) = ∑
𝑡ℎ𝑟 ∈𝑇 (𝑢𝑠,𝑐𝑜𝑙,𝑐ℎ,𝑑𝑎𝑡𝑒)

𝑔4 (𝑢𝑠, 𝑐𝑜𝑙, 𝑡ℎ𝑟, 𝑑𝑎𝑡𝑒)

Multimodal Recommendation of Messenger Channels Conference’17, July 2017, Washington, DC, USA

𝑔4 (𝑢𝑠, 𝑐𝑜𝑙, 𝑡ℎ𝑟, 𝑑𝑎𝑡𝑒) = |𝑀𝑒𝑠 (𝑢𝑠,𝑡ℎ𝑟,𝑑𝑎𝑡𝑒) |+ |𝑀𝑒𝑠 (𝑐𝑜𝑙,𝑡ℎ𝑟,𝑑𝑎𝑡𝑒) |
|𝑀𝑒𝑠 (𝑡ℎ𝑟,𝑑𝑎𝑡𝑒) |

Besides these statistics, we collected statistics for the mentions
level. It was similar to messages level except only messages with
the target user mentioning the colleague were counted. However,
this statistic was too sparse and not useful to any of the algorithms,
so we did not use it in the final models.

Repositories. These statistics represent users’ similarity based
on their interactions within repositories on collaboration and com-
mits levels, similarly to user2rep. Later, these scores were be aver-
aged among all the channel followers (as colleagues), to find out
the relevance score of some channel to the target user.
us2us_col, collaboration-level statistics, represent the ratio of two
users’ common repositories they have contributed to 𝑅(𝑢𝑠, 𝑐𝑜𝑙) to
the number of the target user’s repositories.

𝑢𝑠2𝑢𝑠_𝑐𝑜𝑙 (𝑢𝑠, 𝑐𝑜𝑙) = |𝑅(𝑢𝑠, 𝑐𝑜𝑙) |
|𝑅(𝑢𝑠) |

𝑅(𝑢𝑠, 𝑐𝑜𝑙) = 𝑅(𝑢𝑠) ∩ 𝑅(𝑐𝑜𝑙),
where 𝑅(𝑢𝑠) are repositories that the user has contributed to.
us2us_file, file-level statistics, represent the fraction of files users
both changed at some point on each branch across all their mutual
repositories.

𝑢𝑠2𝑢𝑠_𝑓 𝑖𝑙𝑒 (𝑢𝑠, 𝑐𝑜𝑙) =

∑
𝑟𝑒𝑝∈𝑅 (𝑢𝑠,𝑐𝑜𝑙)

𝐺 (𝑢𝑠,𝑐𝑜𝑙,𝑟𝑒𝑝)
|𝐵𝑟 (𝑢𝑠,𝑟𝑒𝑝) |

|𝑅(𝑢𝑠) |

𝐺 (𝑢𝑠, 𝑐𝑜𝑙, 𝑟𝑒𝑝) = ∑
𝑏𝑟 ∈𝐵𝑟 (𝑢𝑠,𝑐𝑜𝑙,𝑟𝑒𝑝)

|𝐹 (𝑢𝑠,𝑏𝑟)∩𝐹 (𝑐𝑜𝑙,𝑏𝑟) |
|𝐹 (𝑢𝑠,𝑏𝑟) |

𝐵𝑟 (𝑢𝑠, 𝑐𝑜𝑙, 𝑟𝑒𝑝) = 𝐵𝑟 (𝑢𝑠, 𝑟𝑒𝑝) ∩ 𝐵𝑟 (𝑐𝑜𝑙, 𝑟𝑒𝑝)

Organizational Structure. For the org structure modality, we
built an additional matrix 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 that encodes users’ similarity
based on their manager, role, team and leadership status. Each
number in the matrix is a bit mask that represents which parameters
the users share. For example, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 (𝑢𝑠, 𝑐𝑜𝑙) = 13 (1101) means
that these users have the same manager and role, they are both
team leads in their own teams, and only teams are different.

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑢𝑠, 𝑐𝑜𝑙) = 𝑏𝑖𝑡_𝑚𝑎𝑛𝑎𝑔𝑒𝑟, 𝑏𝑖𝑡_𝑟𝑜𝑙𝑒, 𝑏𝑖𝑡_𝑡𝑒𝑎𝑚,𝑏𝑖𝑡_𝑖𝑠_𝑙𝑒𝑎𝑑

Using the 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 matrix, we create three position similarity ma-
trices with statistics based on one of the first three bytes in the
mask. Values of these matrices are 1 if bits in their related positions
equal 1, and 0 otherwise:
us2us_role — role-level statistics — whether two users have the
same role.

𝑢𝑠2𝑢𝑠_𝑟𝑜𝑙𝑒 (𝑢𝑠, 𝑐𝑜𝑙) = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 (𝑢𝑠, 𝑐𝑜𝑙) == #1##

us2us_team — team-level statistics — whether two users belong
to the same team.

𝑢𝑠2𝑢𝑠_𝑡𝑒𝑎𝑚(𝑢𝑠, 𝑐𝑜𝑙) = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 (𝑢𝑠, 𝑐𝑜𝑙) == ##1#

us2us_team-role— role+team-level statistics —whether two users
are on the same team with similar roles.

𝑢𝑠2𝑢𝑠_𝑟𝑜𝑙𝑒_𝑡𝑒𝑎𝑚(𝑢𝑠, 𝑐𝑜𝑙) = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 (𝑢𝑠, 𝑐𝑜𝑙) == #11#

Later, these scores are averaged across all channel followers (as
colleagues), to find out the relevance score of some channel to the
target user.

4.1.3 Other Statistics. In addition to the statistics described above,
we collected the following data: #subscribers as a number of sub-
scribers in channels, #subscriptions as a number of subscriptions
for users, ch_activity_* as channel activities since some date (e.g.
ch_activity_2021-09-01), bm25_rep2ch and bm25_ch2rep as BM25
scores for channels and projects depending on which one is a query.

Channel activity was measured by the number of messages and
threads that were written to channels since some specified date:
ch_activity_[thr|mes]_[date]. For the date we used 1, 3, 6 and 12
months before the point of data collection and evaluation.

Okapi BM25 [41] is a ranking method originally created for web
search engines to estimate documents’ (web pages) relevance to a
query. It is calculated based on frequencies of query words in each
document:

𝐵𝑀25(𝐷,𝑄) =
∑
𝑞∈𝑄

𝐼𝐷𝐹 (𝑞) · 𝑓 (𝑞, 𝐷) · (𝑘 + 1)
𝑓 (𝑞, 𝐷) + 𝑘 · (1 − 𝑏 + 𝑏 · |𝐷 |

𝑎𝑣𝑔𝑑𝑙
)

𝐼𝐷𝐹 (𝑞) = log
𝑁 − 𝑛(𝑞) + 0.5
𝑛(𝑞) + 0.5

where 𝐷 and 𝑄 — document and the query, 𝑓 (𝑞, 𝐷) — frequency
of the word 𝑞 in the document 𝐷 , 𝑎𝑣𝑔𝑑𝑙 — average size of all the
documents in the corpus, 𝑘 and 𝑏 — free coefficients, 𝑁 — number
of documents in the corpus, 𝑛(𝑞) — number of documents with the
word 𝑞.

We can use repository name as a query, and channels’ names
combined with their descriptions as documents (bm25_rep2ch),
or vice versa (bm25_ch2rep).

4.2 Generating the recommendations
Algorithms that recommend entities of some type are usually based
solely on records of interaction with entities of the same type. For
example, collaborative filtering and matrix factorization are two of
the most popular approaches to the problem. Another way to rank
items (channels, in our case) is to use decision trees for regression to
predict a probability of a subscription. We used all these and some
other methods to create the unimodal recommendation models. In
the end, we joined the best-performing statistics (based on historical
testing, Section 5.2.1) to create a multimodal decision trees based
algorithm (XGBoost).

4.2.1 User Aggregation. A logical way to measure channel’s rel-
evance to a user is to estimate their similarity to this channel’s
followers. The more alike they are in at least one of the modalities,
the bigger the chance are the user is going to find this channel
relevant as well. Using the users’ similarities (Section 4.1.2), the
relevance of a channel to the user is calculated as follows:

𝑢𝑠𝑒𝑟 − 𝑎𝑔𝑔_𝑢𝑠2𝑢𝑠_ ∗ (𝑢𝑠, 𝑐ℎ) =

∑
𝑐𝑜𝑙 ∈𝑆 (𝑐ℎ)

𝑢𝑠2𝑢𝑠_ ∗ (𝑢𝑠, 𝑐𝑜𝑙)

|𝐹 (𝑐ℎ) |
where ∗ is one of the levels in one of the three modalities de-
scribed above (e.g. collaboration 𝑢𝑠2𝑢𝑠_𝑐𝑜𝑙 in repositories, or teams
𝑢𝑠2𝑢𝑠_𝑡𝑒𝑎𝑚 in structure), and 𝐹 (𝑐ℎ) is the list of channel followers.
For thread and message statistics level at channel modality, there

Conference’17, July 2017, Washington, DC, USA Ekaterina Koshchenko, Egor Klimov, and Vladimir Kovalenko

is also the date parameter which defines since when we consider
these activities (e.g. 2021-09-01).

4.2.2 Item Aggregation. Another way to measure channel’s rele-
vance to a user is to average the relevance of its subscribers’ items
to that user. For example, if the target user’s relevance to some
channel’s subscribers’ repositories is high, then they might have
something to discuss. The relevance of different items to users
is calculated as described in Section 4.1.1. We calculate channel’s
relevance to the target user as follows:

𝑖𝑡𝑒𝑚 − 𝑎𝑔𝑔_𝑢𝑠2𝑐ℎ_ ∗ (𝑢𝑠, 𝑐ℎ) =

∑
𝑐𝑜𝑙∈𝐹 (𝑐ℎ)

∑
𝑐ℎ∗∈𝑆 (𝑐𝑜𝑙)

𝑢𝑠2𝑐ℎ_∗(𝑢𝑠,𝑐ℎ∗)

|𝑆 (𝑐𝑜𝑙) |

|𝐹 (𝑐ℎ) |

𝑖𝑡𝑒𝑚 − 𝑎𝑔𝑔_𝑢𝑠2𝑟𝑒𝑝_ ∗ (𝑢𝑠, 𝑐ℎ) =

∑
𝑐𝑜𝑙∈𝐹 (𝑐ℎ)

max
𝑟𝑒𝑝∈𝑅 (𝑐𝑜𝑙)

𝑢𝑠2𝑟𝑒𝑝_∗(𝑢𝑠,𝑟𝑒𝑝)

|𝐹 (𝑐ℎ) |

where ∗ is one of the levels in one of the three modalities we have
described above (e.g. collaboration𝑢𝑠2𝑐ℎ_𝑚𝑒𝑠 [𝑑𝑎𝑡𝑒] in channels, or
𝑢𝑠2𝑟𝑒𝑝_𝑓 𝑖𝑙𝑒 in repositories), 𝑆 (𝑢𝑠) is the list of user’s subscriptions,
𝑅(𝑢𝑠) are repositories that the user has contributed to. We use the
maximum score across colleague’s repositories instead of average
(which we use for channels): even one highly relevant repository
for the target user might mean that they have a common interest.
However, for channels, the discussions inside even one channel are
often more general and diverse, so we use the average there.

4.2.3 User Based Collaborative Filtering. This is a standard rec-
ommendation algorithm, logically similar to the user aggregation
described above. However, in this case, the averaging is focused
on the most similar users to the target user, instead of all channel
subscribers.

𝑢𝑠𝑒𝑟 − 𝑐 𝑓 _𝑢𝑠2𝑐ℎ_ ∗ (𝑢𝑠, 𝑐ℎ) =

∑
𝑐𝑜𝑙∈𝑁 (𝑢𝑠)

𝑢𝑠2𝑢𝑠_∗(𝑢𝑠,𝑐𝑜𝑙) ·(𝑐𝑜𝑙 ∈𝐹 (𝑐ℎ))∑
𝑐𝑜𝑙∈𝑁 (𝑢𝑠)

𝑢𝑠2𝑢𝑠_∗(𝑢𝑠,𝑐𝑜𝑙)

𝑁 (𝑢𝑠) = 𝑡𝑜𝑝_5{𝑢𝑠2𝑢𝑠_ ∗ (𝑢𝑠, 𝑐𝑜𝑙)}𝑐𝑜𝑙 ∈{𝑈 \𝑢𝑠 }
where𝑈 is the list of all the users.

4.2.4 Matrix Factorization. Embeddings are numerical vector rep-
resentations of some encoded items. They provide an easy way to
measure similarity and rank items. For our task, we can use matrix
factorization methods to decompose user/channel similarity ma-
trices (𝑢𝑠2𝑐ℎ_∗) into latent representations of users and channels.
Cosine similarity of those representations gives us an estimate of
the relevance score of the respective channel to the user. In this
study we tried three embedding models: Bayesian Personalized
Ranking (bpr) [42], Alternating Least Squares (als) [43], Logistic
Matrix Factorization (lmf) [44]. However, in Section 5.2.1 we only
present results for the bpr method, since it showed the best perfor-
mance of these three matrix factorization methods.

𝑏𝑝𝑟 − 𝑢𝑠2𝑐ℎ_ ∗ (𝑢𝑠, 𝑐ℎ) = 𝑐𝑜𝑠 (𝑒𝑚𝑏 (𝑢𝑠), 𝑒𝑚𝑏 (𝑐ℎ))

where ∗ is one of the channel levels (subscription, threads, mes-
sages), 𝑒𝑚𝑏 is the latent vector representation of an item calculated
based on a user2channel relevance matrix 𝑢𝑠2𝑐ℎ∗, 𝑐𝑜𝑠 is the cosine
similarity function.

4.2.5 Slack. In 2016, Slack posted an article [13] that described
their channel recommendations system, which was a variation of

item-based collaborative filtering. The idea was to use kNN re-
gression to fill in missing values in the user-channel relevance
matrix. We describe this algorithm in detail in Section 2.3.2. Since
the data that we use does not contain any time metrics, we em-
ploy users’ activities in terms of messages: 𝑢𝑠2𝑐ℎ_𝑡ℎ𝑟_[𝑑𝑎𝑡𝑒] and
𝑢𝑠2𝑐ℎ_𝑚𝑒𝑠_[𝑑𝑎𝑡𝑒].

𝑀𝑠𝑖𝑚(𝑐ℎ1, 𝑐ℎ2) =
𝑢𝑠2𝑐ℎ_ ∗ (𝑐ℎ1) × 𝑢𝑠2𝑐ℎ_ ∗ (𝑐ℎ2)

| |𝑢𝑠2𝑐ℎ_ ∗ (𝑐ℎ1) | | · | |𝑢𝑠2𝑐ℎ_ ∗ (𝑐ℎ2) | |

𝑠𝑙𝑎𝑐𝑘 − 𝑢𝑠2𝑐ℎ_ ∗ (𝑐ℎ,𝑢𝑠) =

∑
𝑖∈[𝑖1,...,𝑖𝑘]

𝑀𝑠𝑖𝑚 (𝑐ℎ,𝑐ℎ𝑖) ·𝑢𝑠2𝑐ℎ_∗(𝑢𝑠,𝑐ℎ𝑖)∑
𝑖∈[𝑖1,...,𝑖𝑘]

𝑀𝑠𝑖𝑚 (𝑐ℎ,𝑐ℎ𝑖)

where 𝑢𝑠2𝑐ℎ_ ∗ (𝑐ℎ𝑖) is the row in channel-user relevance matrix
𝑢𝑠2𝑐ℎ_∗ corresponding to 𝑐ℎ𝑖 .

4.2.6 XGBoost. XGBoost [45] is a software library that provides
a framework regularizing gradient boosting decision trees. In our
study, we use it to combine several statistics from different modali-
ties, and train a multimodal recommendation model. We also train
a model only based on channel-related scores (e.g. 𝑖𝑡𝑒𝑚 − 𝑎𝑔𝑔𝑠𝑢𝑏)
to make sure that the multimodal model performs better than uni-
modal algorithms because of additional modalities, and not because
it applies several channel statistics. We present the results in Sec-
tion 5.2.2 and Section 5.3.

5 EVALUATION
5.1 Evaluation methods
For this study, we collected a unique dataset combining several
types of data about organization’s employees and their interactions.

To train the recommendation systems, we only use channels
with (1) with at least 3 subscribers, (2) that were active in the last 6
months, meaning there was at least one message sent to the channel.
This was done to filter out "dead" channels. After filtering process,
there were about 450 channels left (Table 1).

5.1.1 History testing. To evaluate and compare the recommenders,
we use a history testing method with Precision@3, MAP (Mean
Average Precision), and ROC-AUC metrics. The task of each recom-
mendation system is to make 3 suggestions of channels for each
user. We chose this number for several reasons:

• Less than 3 recommendations leaves little choice to the users.
• Providing more recommendations considerably decreases
the size of the testing dataset: there are about 150 channels
in Space.

• More than 3 recommendations means lower relevance on av-
erage and less trust in the system. It also generates a longer
combined list with higher positional bias (first recommenda-
tions are considered more relevant).

Thus, for history testing, all employees subscribed to less than 3
channels were filtered out of the dataset.

In historical testing, we call the channels that the target user is
subscribed to "positives", and others are "negatives". The testing
dataset contained 3 last Space positives that the user subscribed to
(to match the 3 suggestions made by the model), and 30% of Space
negatives. All remaining Space positives were joined with all Slack
positives, and 70% of Space negatives were joined with all of Slack
negatives into a training set.

Multimodal Recommendation of Messenger Channels Conference’17, July 2017, Washington, DC, USA

5.1.2 Assessment by users. Besides history testing, we asked Jet-
Brains employees to evaluate recommendations generated by four
models. At this stage, we generated 2 recommendations from each
of the following models:
(1) random: suggestions for each user are random channels among
all available. We use this algorithm to estimate how critical users
are, whether they are mostly happy with any suggestions, or they
are more thorough about their subscriptions.
(2) bpr-us2ch_sub: the best unimodal system that is based solely
on channels’ data. It represents a big segment of existing approaches
that only use the data directly related to the task objective.
(3)XGB_ch: decision trees trained on three channel statistics show-
ing the highest performance on historical testing: #subscribers, bpr-
us2ch_sub, item_agg-us2ch_thr_2021-09-01. We built this model to
make sure that multimodal XGBoost model performs better due to
the additional modalities, and not the united channel statistics.
(4) XGB_all: decision trees trained on the best statistics from
all three data modalities: #subscribers, bpr-us2ch_sub, item_agg-
us2ch_thr_2021-09-01, user_agg-us2us_team, user_agg-us2us_team-
role, user_agg-us2us_col, item_agg-us2pr_file. We compare this ap-
proach to the unimodal systems to see if (and how) additional
modalities improve generated recommendations.

Each of these models produced 2 recommendations, so each
survey participant received up to 8 channels to rate (less if there
were intersections).

Also, we created an internal channel recommender bot in Space.
The bot sends out the recommendations to the users on their request.
After getting the recommendations, the user could follow the links
to inspect the channels, and rate the recommendations by clicking
one of the colored emojis (green, yellow, red) representing the scores
of 1, 0, and -1. We asked the users to use the following scores:

• -1 (red), if the channel is irrelevant for the user;
• 0 (yellow), if the channel is somehow relevant or interesting
for the user but they would not subscribe to it;

• 1 (green), if the channel is relevant, and the user would
subscribe to it.

5.2 Evaluation results
5.2.1 History testing: experiments within modalities. The first stage
of evaluation was historical testing. In historical testing, we split
the dataset by randomly choosing 30% of negative examples and 3
last positive examples for a testing set, and everything else for the
training set. All models are trained on the training set, and then
their performance on the testing set is assessed.

Historical testing scores for all models are presented in Table 2.
The basic topk_subscribers model performed rather well with 61%
ROC AUC and 30% MAP. There are not that many active channels
in Space yet (Table 1), so the biggest channels are quite likely to
be the most general and important ones that are relevant to many
users. The best-performing unimodal channels based algorithm
was bpr-us2ch_sub with the highest ROC-AUC score across all
models. It is interesting to see that the best unimodal algorithms
based on repositories (item_agg-us2pr_file) or structure (user_agg-
us2us_team) got scores that are close to the bpr model. Moreover,
Precision@3 and MAP for the unimodal structural algorithm were
even higher than for the unimodal channel algorithm.

Table 2: Results of historical testing: unimodal algorithms.

Algorithm Pr@3
%

MAP
%

ROCAUC
%

random 8 10 50
topk_subscribers 35 30 61
topk_bm25-pr2ch 18 17 58
topk_bm25-ch2pr 18 18 56

slack-us2ch_thr_2021-09-01 19 16 53
slack-us2ch_mes_2021-09-01 19 16 54

user_agg-us2us_sub 24 18 54
user_agg-us2us_thr_2021-09-01 29 24 68
user_agg-us2us_mes_2021-09-01 32 25 69

user_agg-us2us_col 32 26 67
user_agg-us2us_file 34 29 66

user_agg-us2us_team 42 33 69
user_agg-us2us_role 17 16 57

user_agg-us2us_team-role 35 28 66
item_agg-us2ch_thr_2021-09-01 35 25 74
item_agg-us2ch_mes_2021-09-01 35 26 74

item_agg-us2pr_col 31 25 67
item_agg-us2pr_file 34 29 67

user_cf-us2us_thr_2021-09-01 38 29 66
user_cf-us2us_mes_2021-09-01 37 28 65

bpr-us2ch_sub 40 30 75
bpr-us2ch_thr_2021-09-01 29 22 68

Date format is YYYY-MM-DD. We tried several time spans (1, 3, 6, 12
months). Using the data for 3 months before the evaluation yielded the

highest performance.

5.2.2 History testing: experiments between modalities. We used
the statistics we collected from the unimodal methods to train the
XGB_all and XGB_ch models.

XGB_all achieved 82% ROC AUC, which is 7% higher than the
best unimodal method ROC AUC. Its precision scores are also con-
siderably higher: 62% Precision@3 and 55% MAP which is 20% and
12% better than the best unimodal algorithms.

XGB_ch achieved 61% Precision@3, 54% MAP and 81% ROC
AUC, which is similar to the XGB_all multimodal method. Because
of the similar performance, we could not compare it with the mul-
timodal model until the evaluation by users.

5.3 Assessment by users
The results of user assessment are presented in Table 3. Feedback
from users received during this experiment suggests the following.
(1) On average, channels in Space are mostly irrelevant to users:
since 73% of random suggestions were marked irrelevant. Thus, the
task of finding the few that are more relevant to the user is valid in
this environment.
(2) The unimodal channel-based model (bpr-us2ch_sub) is a good
baseline to work with. Its recommendations are rated better than
those of the random one: over 25% less irrelevant suggestions, and
10% more subscriptions.
(3) The XGB_ch model shows a decrease in irrelevant recommen-
dations, and increase in subscriptions, relative to bpr-us2ch_sub.

Conference’17, July 2017, Washington, DC, USA Ekaterina Koshchenko, Egor Klimov, and Vladimir Kovalenko

Table 3: User assessment results.

Method -1, % 0, % 1, %
random 73% 16% 11%

bpr-us2ch_sub 46% 33% 21%
XGB_ch 27% 42% 31%
XGB_all 32% 22% 46%

Columns represent users’ ratings of the channels: (-1) is irrelevant, (0) is
relevant but not subscription worthy, (1) is subscription worthy.

(4) The XGB_all model provides slightly higher percentage of ir-
relevant recommendations, however, its number of subscriptions
is significantly higher: It is 15% more than the best score in the
XGB_ch model. Since providing relevant recommendations is the
goal for the models, XGB_all shows the best results among all the
compared channel recommendation algorithms.

6 THREATS TO VALIDITY
There are several threats to validity of this study.

6.0.1 Internal validity. The platform we used to conduct the ex-
periments (Space) is relatively new, and its user base at JetBrains is
still growing. At the time of the experiment, the number of active
channels was relatively low (Table 1). We could notice the intersec-
tion in recommendation sets for different people, which makes the
recommendation task less personalized in this context. Also, we did
not analyze the performance of the algorithms on employees with
different roles (e.g. software engineers, designers, HR). Employees
with different roles might use different modalities a lot less or more
often (e.g. HR probably do not have technical repository data). This
is worth studying in future work.

6.0.2 External validity. Our study was conducted in an organi-
zation with a specific field of work. Most of the channels in the
workspace of JetBrains are dedicated to specific topics that are
mostly only interesting for the limited number of people. Besides,
people from different teams often work on related tasks. For these
two reasons, some users may receive recommendations of more
general channels, rather than of those specific to their personal
interests. Bigger and more general channels of different teams (e.g.
a channel with news about a new project) turned out to be inter-
esting for many users, even if they were not directly involved with
the topic. This situation might be less likely possible in companies
with more diverse scopes of work, such as outsourcing companies.

Finally, the need for a channel recommendation system might
simply not be present in some organizations. If the organization is
too small, or if it has some external systems augmenting the dis-
covery of internal communication resources (e.g. map of channels),
our results are simply not relevant.

7 RESULTS AND CONCLUSION
RQ1: By combining three types of data — channels, reposito-
ries, and organization structure — we can improve the qual-
ity of recommendation algorithms in terms of perceived rel-
evance. The model based on three types of data generated the same

amount of irrelevant recommendations as the best of unimodal algo-
rithms, yet the amount of "subscription worthy" recommendations
was significantly higher (Section 5.3).

Besides that, the best unimodal models based on repository activ-
ity or organizational structure show score quite similar to the best
unimodal channel-based models. This leads us to believe that the
channel data, technical, structural data are equally important for
our task. This is important, because channel data (even public) is
harder to acquire and work with due to privacy and ethical issues.

Structural data appears to be particularly useful for the new
users who do not have any channel subscriptions or repository
contributions yet. So, a specific study on how different modalities
handle new users is an interesting direction for future work.

Since including different types of data into the channel recom-
mendation algorithms improves their performance, we believe that
it might also be true for other socio-technical assistance algorithms,
such as reviewer recommendation systems. This is the idea we
are going to study in our future work, along with including other
modalities, such as meetings, code review discussions, and issue
tracking records.

RQ2: Assessors only found less than a third of the sugges-
tions generated by the best recommendation algorithms to
be irrelevant. In the user evaluation of the multimodal model,
only 30% of recommendations was marked as irrelevant, compared
for over 70% for random recommendations. Besides that, almost
half of the recommendations generated by multimodal model were
marked as "subscription worthy". This suggests that channel rec-
ommendation systems are capable of helping users find interesting
channels they did not know about, which could promote informa-
tion exchange and ultimately support the organization.

7.1 Conclusion
To our knowledge, this study is the first on the effects of multi-
modal data on channel recommendation algorithms. By testing
multiple algorithms based on different types of data, we explore
how modalities influence quality of recommendations. Given the
ongoing evolution of developer tools into multifaceted platforms
and our results, we are calling for more work on multimodal ap-
proaches to RSSE problems.

7.2 Reproducibility
Due to trade secrecy and privacy law, we keep the data collec-
tion code and the dataset private. The code for calculation of the
statistics, implementation of the models, and historical testing is
available on Zenodo2.

8 ACKNOWLEDGEMENTS
We thank our colleagues at JetBrains for their help and cooper-
ation. Special thanks to the Space team, Alexey Sviridov, Klara
Salamounova, Yaroslav Russkih, Alexander Syplyvchak, and Vadim
Reider.

2Reproduction package: https://doi.org/10.5281/zenodo.5889598

https://doi.org/10.5281/zenodo.5889598

Multimodal Recommendation of Messenger Channels Conference’17, July 2017, Washington, DC, USA

REFERENCES
[1] S. Overflow. (2021) 2021 Stack Overflow developer survey. [Online]. Avail-

able: https://insights.stackoverflow.com/survey/2021#section-most-popular-
technologies-other-tools

[2] D. Lahat, T. Adali, and C. Jutten, “Multimodal data fusion: An overview of meth-
ods, challenges, and prospects,” Proceedings of the IEEE, vol. 103, no. 9, pp. 1449–
1477, 2015.

[3] H. Naguib, N. Narayan, B. Brügge, and D. Helal, “Bug report assignee recom-
mendation using activity profiles,” in 2013 10th Working Conference on Mining
Software Repositories (MSR). IEEE, 2013, pp. 22–30.

[4] P. Thongtanunam, C. Tantithamthavorn, R. G. Kula, N. Yoshida, H. Iida, and K.-i.
Matsumoto, “Who should review my code? a file location-based code-reviewer
recommendation approach for modern code review,” in 2015 IEEE 22nd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering (SANER),
2015, pp. 141–150.

[5] I. Avazpour, T. Pitakrat, L. Grunske, J. Grundy, M. Robillard, W. Maalej, R. Walker,
and T. Zimmermann, “Recommendation systems in software engineering,” Di-
mensions and metrics for evaluating recommendation systems, pp. 245–273, 2014.

[6] A. Bacchelli and C. Bird, “Expectations, outcomes, and challenges of modern
code review,” in Proceedings of the 2013 International Conference on Software
Engineering, ser. ICSE ’13. IEEE Press, 2013, p. 712–721.

[7] E. Mirsaeedi and P. C. Rigby, “Mitigating turnover with code review recommenda-
tion: Balancing expertise, workload, and knowledge distribution,” in Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering, ser. ICSE
’20, 2020, p. 1183–1195.

[8] A. Chueshev, J. Lawall, R. Bendraou, and T. Ziadi, “Expanding the number of
reviewers in open-source projects by recommending appropriate developers,”
in 2020 IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2020, pp. 499–510.

[9] M. Bowler. (2005) Truck factor. [Online]. Available: http://www.agileadvice.com/
2005/05/15/agilemanagement/truck-factor/

[10] “Slack,” https://slack.com/, accessed: 2022-01-18.
[11] Slack. Channels: Discover a new way of working. Accessed: 2022-01-11. [Online].

Available: https://slack.com/features/channels
[12] ——. (2019) How channels extend the reach of internal communications. [Online].

Available: https://slack.com/blog/collaboration/slack-on-slack-how-channels-
extend-the-reach-of-internal-communications?from=channels

[13] “Personalized channel recommendations in Slack,” https://slack.engineering/
personalized-channel-recommendations-in-slack/, accessed: 2022-01-18.

[14] H. A. Çetin, E. Doğan, and E. Tüzün, “A review of code reviewer recommendation
studies: Challenges and future directions,” Science of Computer Programming, vol.
208, p. 102652, 2021.

[15] “JetBrains Space,” https://www.jetbrains.com/space/, accessed: 2022-01-18.
[16] M. Gasparic and A. Janes, “What recommendation systems for software engineer-

ing recommend: A systematic literature review,” Journal of Systems and Software,
vol. 113, pp. 101–113, 2016.

[17] M. Robillard, R. Walker, and T. Zimmermann, “Recommendation systems for
software engineering,” IEEE software, vol. 27, no. 4, pp. 80–86, 2009.

[18] S. Luan, D. Yang, C. Barnaby, K. Sen, and S. Chandra, “Aroma: Code recom-
mendation via structural code search,” Proceedings of the ACM on Programming
Languages, vol. 3, no. OOPSLA, pp. 1–28, 2019.

[19] V. Raychev, M. Vechev, and E. Yahav, “Code completion with statistical language
models,” in Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2014, pp. 419–428.

[20] D. Matter, A. Kuhn, and O. Nierstrasz, “Assigning bug reports using a vocabulary-
based expertise model of developers,” in 2009 6th IEEE International Working
Conference on Mining Software Repositories, 2009, pp. 131–140.

[21] F. Thung, D. Lo, and J. Lawall, “Automated library recommendation,” in 2013 20th
Working conference on reverse engineering (WCRE). IEEE, 2013, pp. 182–191.

[22] J. Cordeiro, B. Antunes, and P. Gomes, “Context-based recommendation to sup-
port problem solving in software development,” in 2012 Third International Work-
shop on Recommendation Systems for Software Engineering (RSSE), 2012, pp. 85–89.

[23] P. Bhattacharya, I. Neamtiu, and C. R. Shelton, “Automated, highly-accurate, bug
assignment using machine learning and tossing graphs,” Journal of Systems and
Software, vol. 85, no. 10, pp. 2275–2292, 2012.

[24] B. Alkhazi, A. DiStasi, W. Aljedaani, H. Alrubaye, X. Ye, and M. W. Mkaouer,
“Learning to rank developers for bug report assignment,” Applied Soft Computing,
vol. 95, p. 106667, 2020.

[25] V. Kovalenko, N. Tintarev, E. Pasynkov, C. Bird, and A. Bacchelli, “Does reviewer
recommendation help developers?” IEEE Transactions on Software Engineering,
vol. 46, no. 7, pp. 710–731, 2018.

[26] X. Xia, D. Lo, X. Wang, and B. Zhou, “Accurate developer recommendation for
bug resolution,” in 2013 20th Working Conference on Reverse Engineering (WCRE).
IEEE, 2013, pp. 72–81.

[27] E. Sülün, E. Tüzün, and U. Doğrusöz, “Rstrace+: Reviewer suggestion using
software artifact traceability graphs,” Information and Software Technology, vol.
130, p. 106455, 2021.

[28] A. Bacchelli, M. Lanza, and R. Robbes, “Linking e-mails and source code arti-
facts,” in Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, 2010, pp. 375–384.

[29] R. Romero, E. Parra, and S. Haiduc, “Experiences building an answer bot for
gitter,” in Proceedings of the IEEE/ACM 42nd International Conference on Software
Engineering Workshops, 2020, pp. 66–70.

[30] E. Shihab, Z. M. Jiang, and A. E. Hassan, “Studying the use of developer irc meet-
ings in open source projects,” in 2009 IEEE International Conference on Software
Maintenance. IEEE, 2009, pp. 147–156.

[31] P. Chatterjee, K. Damevski, L. Pollock, V. Augustine, and N. A. Kraft, “Exploratory
study of slack q&a chats as a mining source for software engineering tools,” in
2019 IEEE/ACM 16th International Conference on Mining Software Repositories
(MSR). IEEE, 2019, pp. 490–501.

[32] B. Lin, A. Zagalsky, M.-A. Storey, and A. Serebrenik, “Why developers are slacking
off: Understanding how software teams use slack,” in Proceedings of the 19th
acm conference on computer supported cooperative work and social computing
companion, 2016, pp. 333–336.

[33] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit feedback
datasets,” in 2008 Eighth IEEE International Conference on Data Mining. Ieee,
2008, pp. 263–272.

[34] X. N. Lam, T. Vu, T. D. Le, and A. D. Duong, “Addressing cold-start problem in
recommendation systems,” in Proceedings of the 2nd international conference on
Ubiquitous information management and communication, 2008, pp. 208–211.

[35] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based collaborative filtering
recommendation algorithms,” in Proceedings of the 10th international conference
on World Wide Web, 2001, pp. 285–295.

[36] “GitHub,” https://github.com/, accessed: 2022-01-18.
[37] M. Ortu, B. Adams, G. Destefanis, P. Tourani, M. Marchesi, and R. Tonelli, “Are

bullies more productive?: empirical study of affectiveness vs. issue fixing time,”
in Proceedings of the 12th Working Conference on Mining Software Repositories,
2015, pp. 303–313.

[38] “Guide to Slack import and export tools,” https://slack.com/help/articles/
204897248-Guide-to-Slack-import-and-export-tools, accessed: 2022-01-18.

[39] “GitHub REST API,” https://docs.github.com/en/rest, accessed: 2022-01-18.
[40] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed represen-

tations of words and phrases and their compositionality,” in Proceedings of the
26th International Conference on Neural Information Processing Systems - Volume
2, ser. NIPS’13, 2013, p. 3111–3119.

[41] S. Robertson and H. Zaragoza, “The probabilistic relevance framework: Bm25
and beyond,” Foundations and Trends in Information Retrieval, vol. 3, pp. 333–389,
2009.

[42] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr: Bayesian
personalized ranking from implicit feedback,” in Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, ser. UAI ’09. AUAI Press,
2009, p. 452–461.

[43] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit feedback
datasets,” in 2008 Eighth IEEE International Conference on Data Mining, 2008, pp.
263–272.

[44] C. C. Johnson, “Logistic matrix factorization for implicit feedback data,” Advances
in Neural Information Processing Systems, vol. 27, no. 78, pp. 1–9, 2014.

[45] “Get Strated with XGBoost,” https://xgboost.readthedocs.io/en/stable/get_started.
html, accessed: 2022-01-18.

https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-other-tools
https://insights.stackoverflow.com/survey/2021#section-most-popular-technologies-other-tools
http://www.agileadvice.com/2005/05/15/agilemanagement/truck-factor/
http://www.agileadvice.com/2005/05/15/agilemanagement/truck-factor/
https://slack.com/
https://slack.com/features/channels
https://slack.com/blog/collaboration/slack-on-slack-how-channels-extend-the-reach-of-internal-communications?from=channels
https://slack.com/blog/collaboration/slack-on-slack-how-channels-extend-the-reach-of-internal-communications?from=channels
https://slack.engineering/personalized-channel-recommendations-in-slack/
https://slack.engineering/personalized-channel-recommendations-in-slack/
https://www.jetbrains.com/space/
https://github.com/
https://slack.com/help/articles/204897248-Guide-to-Slack-import-and-export-tools
https://slack.com/help/articles/204897248-Guide-to-Slack-import-and-export-tools
https://docs.github.com/en/rest
https://xgboost.readthedocs.io/en/stable/get_started.html
https://xgboost.readthedocs.io/en/stable/get_started.html

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Recommender Systems in Software Engineering
	2.2 Combining multiple data sources
	2.3 Channel recommendations

	3 Methodology
	3.1 Research Questions
	3.2 Data
	3.3 Experiment setup

	4 Channel Recommendation
	4.1 Statistics
	4.2 Generating the recommendations

	5 Evaluation
	5.1 Evaluation methods
	5.2 Evaluation results
	5.3 Assessment by users

	6 Threats to validity
	7 Results and conclusion
	7.1 Conclusion
	7.2 Reproducibility

	8 Acknowledgements
	References

