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ABSTRACT
Modern distributed version control systems, such as Git, o�er sup-
port for branching — the possibility to develop parts of software
outside the master trunk. Consideration of the repository struc-
ture in Mining Software Repository (MSR) studies requires a thor-
ough approach to mining, but there is no well-documented, wide-
spread methodology regarding the handling of merge commits and
branches. Moreover, there is still a lack of knowledge of the extent
to which considering branches during MSR studies impacts the
results of the studies.

In this study, we set out to evaluate the importance of proper
handling of branches when calculating �le modi�cation histories.
We analyze over 1,400 Git repositories of four open source ecosys-
tems and compute modi�cation histories for over two million �les,
using two di�erent algorithms. One algorithm only follows the �rst
parent of each commit when traversing the repository, the other
returns the full modi�cation history of a �le across all branches. We
show that the two algorithms consistently deliver di�erent results,
but the scale of the di�erence varies across projects and ecosystems.
Further, we evaluate the importance of accurate mining of �le histo-
ries by comparing the performance of common techniques that rely
on �le modi�cation history — reviewer recommendation, change
recommendation, and defect prediction — for two algorithms of �le
history retrieval. We �nd that considering full �le histories leads to
an increase in the techniques’ performance that is rather modest.
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1 INTRODUCTION
The work�ow of modern version control systems (VCS), such as
Git, extensively relies on branching. Branching support allows
developers to manage multiple isolated versions of the working tree,
which can be modi�ed independently of each other. Branch-related
operations in Git are by design extremely lightweight compared
to older VCSs [27]. Low cost of branching allows branches to be
used for development of individual features, for experimenting
with design solutions, and for preparing releases [23]. In all these
examples use of branches allows teams to keep the main working
tree free of questionable code and reduces development overhead
related to version con�icts [46].

While being the most popular version control system today [14],
Git is quite unfriendly for data mining [27]. In particular, branching
features introduce issues for miners: branches can be removed and
overwritten, and synchronization with the remote repository can
introduce implicit branches with no logical meaning [27].

Despite the di�culties with analysis of Git history, mining of
historical data from VCS is still the basis for a variety of studies,
which quantitatively explore the development process and suggest
approaches to facilitate it [20, 26, 36, 40, 43, 52, 62–64].

History of individual �les is a particularly important source
of information for prominent practical applications, like (i) de-
fect prediction algorithms, where metrics based on �le history are
important features [25, 36, 41, 53], (ii) code ownership heuristics
[38, 42, 60], which are based on aggregation of individual contribu-
tions of all authors of the �le, and (iii) code reviewer recommenda-
tion [22, 54, 59, 61], where history of prior changes to �les serves
as a basis for automatic selection of the expert reviewers.

Pitfalls of Git from the data mining perspective pose common
threats to validity of every of such studies. Some of these threats,
such as mutability of history, are commonly acknowledged by re-
searchers (e.g., [18, 34, 45, 63, 65]). Nevertheless, there is no wide-
spread approach to handling of merge commits and branches during
mining. Moreover, MSR studies often do not provide a detailed de-
scription of mining algorithms, and handling of the branches in
particular, or explicitly focus the analyses on the main branch of
the repository [18].

In this study, we aim at making a �rst step toward the assessment
of the threats arising from not considering full information about
brenching in mining software repository studies. Speci�cally, we
focus on the impact of the branch handling strategy on extraction of
a �le modi�cation history. This task requires a traversal of a repos-
itory graph to collect individual commits a�ecting the �le. We �rst
perform a preliminary analysis on how the mining of �le histories
is impacted by branches, by measuring how much �rst-parent (i.e.,
history extractable when only considering the �rst parent of each
commit when traversing the repository) and full (i.e., the history
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extractable when considering changes in all branches) �le histo-
ries di�er from each other. Then, we study how performance of
three MSR applications (code reviewer recommendation, change
recommendation, and defect prediction), that use �le modi�cation
histories as input data, varies when considering branches.

Our results show that the �rst-parent and full mining strategies
consistently result in di�erent �le histories, even though the scale
of the di�erence varies across software ecosystems and repositories
within each ecosystem. We �nd that considering the full �le histo-
ries leads to an increase in the considered MSR-based techniques’
performance that is rather modest. This marginal increase indicates
that our �ndings do not raise any serious questions on the validity
of studies that simplify the mining approach. Nevertheless, in our
work we devised a method and a tool for e�cient mining of full �le
histories at scale, which we make publicly available [11].

2 BACKGROUND
Several prior studies focus on the use of branching and its added
value for developers. Combined, these studies provide strong evi-
dence of importance of branching in modern software development.
Appleton et al. [19] explore an extensive set of branching patterns
and propose a number of best practices and antipatterns. Bu�en-
barger and Gruell [32] devise practices and patterns to facilitate e�-
cient parallel development, mitigating the complexity of branching
operations in early VCSs. Bird et al. [29] conclude that developers
working in a branch represent a virtual team. Barr et al. [23] claim
that lightweight branching support is the primary factor in rapid
adoption of modern distributed VCSs in OSS projects. Bird and Zim-
mermann [28] identify common problems from improper branch
usage and propose an analysis to assess more e�cient alternative
branch structures. Shihab et al. [56] �nd that the excessive use of
branches is associated with a decrease in software quality.

Today’s most popular version control system — Git — was not
designed to preserve a precise history of modi�cations [10], which
implies di�culties with the analysis of these histories [27, 48]. Anal-
ysis of software version histories is not only used to study the
development practices, but also to facilitate development with data-
driven tools. Prominent examples of applications for tools heavily
relying on histories of changes of individual �les are defect pre-
diction [35, 39, 47], code reviewer recommendation [22, 61], and
change prediction [67, 68]. Notably, the complexity of Git, the mu-
tability of its data structure, and the di�culty of �guring out the
parent relationships between revisions complicate the work of re-
searchers and prevent some practitioners from using it as their
version control system [16]. Being able to accurately retrieve his-
tories of prior changes is vital for e�cient use of techniques that
are based on histories. Moreover, in some cases histories need to
be processed to achieve optimal performance of the techniques:
For instance, Kawrykow and Robillard [44] show that removing
non-essential changes from modi�cation histories improves the
performance of co-change recommendation [68].

2.1 Motivation
Version control repositories are the key data source for a wide
variety of software engineering studies [34, 36, 41, 58, 63]. With
no widespread high-level mining tool in use, the common way

for the researchers to mine the histories of repositories is to use
homegrown tools based on low-level libraries, such as JGit [9].
While low-level operations provide greater �exibility of mining,
they also undermine the reproducibility of studies, as details of
mining are usually not elaborated on in the papers. Reproduction
packages, where available, commonly contain information obtained
after mining, but not the repository mining scripts.

Restoring the actual change history from a Git repository is
challenging and error-prone [27]. To come around the di�culties,
some studies (e.g. [18]) focus on the development activity in the
main branch, thus omitting part of the changes in the repository.
This approach may be su�ciently precise for some applications,
because (i) in some repositories most of development activity takes
place in the master branch, and (ii) the rebase operation is often
used to integrate changes from branches into the main branch.
However, consideration of branches and careful handling of merge
commits might be important for precise calculation of individual
�le histories, which are the primary source of input data in some
contexts, such as code reviewer recommendation [22] and change
recommendation [68].

The di�erence in quality of data between di�erent mining ap-
proaches, and the impact of the chosen mining approach on perfor-
mance of analysis methods driven by historical data, are not clear
and have not yet been explored. We conduct this study to quan-
tify the e�ect of considering the graph structure of the repository
(importance of such consideration is reported as one of the perils
of mining Git [27]) and to investigate how the di�erence in the
results from di�erent mining approaches impacts performance of
MSR applications.

While the �le histories are the main input data for a variety of
MSR-based techniques, there is no guarantee that more complex
and precise mining methods ensure an increase in performance of
the techniques notable enough to justify the extra mining e�ort.
With no prior research existing on this topic, with this study we
seek not only to identify the impact of branch handling strategy on
performance of �le-history-based methods, but also to compare the
scale of this impact between di�erent techniques. This knowledge
could help make a step towards ensuring that MSR studies and their
practical applications employ optimal mining strategies to get the
most value out of the repository data.

2.2 Challenges of Mining the File Histories
Mining of histories of individual �les at large scale is a non-trivial
task. Git provides a toolkit for repository operations, including git
log, which facilitates retrieval of logs of commits. However, Git
was not designed to support careful storage and retrieval of history
of changes [10, 31, 49, 57], which implies several complications
with using git log for mining �le histories. Speci�cally:

Performance With no specialized index for �le histories in place,
retrieval of histories of changes for an individual �le requires
traversal of the commit graph. Retrieval of histories for every �le
in the repository tree is very expensive.

Handling of renames AGit repository does not contain any records
of renames and moves of �les. Such events are detected based
on similarity of contents of consecutive versions of a �le, with
thresholds de�ned by the settings of the Git client. As a result,
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calculated history of the same �le in the same repository might
appear di�erent on di�erent clients.

Handling of merge commits and branches The git log tool,
which is often used for analysis of software histories, supports
an overwhelming variety of settings, with over 100 argument
options [6]. Unless the tool is thoroughly set up, some potentially
interesting changes might be implicitly omitted: for example, by
default git log prunes some side branches. A default approach
might not be suitable for some applications.

Di�culty of use A wide variety of settings makes the user expe-
rience with git log quite complicated. Certain scenarios of re-
trieval of repository history are even harder: for example, travers-
ing the commits graph forward in time, which might be useful
in some contexts, is more di�cult. For example, all descendants
of a commit can be retrieved with the following command:

git rev-list --all --parents | grep �.\{40\}.*SHA.*� |

awk �{print $1}�

This command [5], which only lists the commits without provid-
ing any information on the structure, is already not trivial.

2.3 Retrieval of File Histories
History of commits in a Git repository can be represented as a
directed acyclic graph. Each commit logically represents a state
of the repository’s �le tree. Each version of the state is based on
one or several prior (parent) version, and only the di�erence in
the state between the parent and the current version is actually
stored.1 In Figure 1 (left), which presents a hypothetical commit tree,
the commit parent relationships are represented by black arrows:
for example, commit 5 is the parent of commit 6. Merge commits,
which integrate changes from multiple branches, have more than
one parent. In Figure 1, commit 5 has two parents: 3 and 4. In a
merge commit with multiple parents, the list of parents is sorted:
if branch A is merged into branch B, the �rst parent of the merge
commit would be the one that branch B was pointing to before the
merge. In Figure 1, parent commits are sorted left to right: commit
4 is the �rst parent of commit 5.

Each commit a�ects a set of �les2 and de�nes their new content
relative to their content in the parent commit. It is possible to say
that a commit a�ects a �le, if its content in the revision which is
represented by the current commit is di�erent from its content
in the parent commit, or if the �le was created/removed in the
current commit. It is common to think of a commit as simply a set
of changes in one or multiple �les. This simple model is convenient
and is used by Git itself, e.g., in the git diff command. In Figure 1,
a�ected �les are shown in boxes next to nodes of the commit tree.

Retrieval of a a history of changes for a given �le — i.e., list
of the commits that a�ect this �le — one needs to traverse the
commit graph to identify such commits. A traversal and handling
of commits one by one is necessary because Git does not store any
auxiliary data that would allow to perform this operation faster.
During the traversal, it is possible to either follow all parents of a
merge commit, which ensures visiting every transitive parent of
the starting point and including all of these commits in the history,
or only follow the �rst parent.

1Described is a simpli�ed scheme of the storage model of Git, which is in reality more
complex.
2The set can be empty, e.g., in most of merge commits without con�icts.

We refer to the traversal strategy that follows all parents and
to resulting histories as full. Considering the example repository
graph in Figure 1, full traversal starting from the latest commit in
the repository (12) would include all 12 commits in the repository.
A full history for the �le f2 would contain all 9 of these commits
that a�ect f2. An alternative strategy is to only follow the �rst
parent of every merge commit during the traversal. We refer to this
strategy and resulting �le histories as �rst-parent. For the example
in Figure 1, such traversal starting from commit (12) would only
include commits (12), (11), (9), (6), (5), (4), (2), and (1). A �rst-parent
history of f2 would only include 6 commits from this traversal that
a�ect f2. It is important to note that the �rst-parent strategy does
not omit merge commits that contain changes to the �le relative to
its �rst parent: an example of such commit in Figure 1 is (5), and it
is included in the �rst-parent history as well.

The histories for the �le f2, as retrieved with both strategies, are
presented in Figure 1 (right). As the �rst-parent history contains less
commits, some changes to the �le are omitted. Thus, using the �rst-
parent strategy to calculate quantitative properties of �le histories,
such as number of changes or number of contributors, leads to
incomplete results. The two cases represented by the two strategies
are rather extreme: the simpli�ed strategy omits all changes that
were made outside the main branch and did not end up in the
main branch after a rebase. There are less radical ways of simpli�ed
handling of branches than to omit traversing the branch completely.
For example, one way to see the summary of changes in a branch
is to inspect the output of git diff between two parents of a
merge commit. This approach is adopted by some GUI applications
on top of Git, such as Sourcetree3. While this approach allows to
retrieve a summary of changes in a branch, the individual changes,
possibly made by di�erent authors, are presented together and are
not distinguishable, which makes the approach less applicable for
mining tasks: it is impossible to identify individual contributions
by count, sizes, or dates of changes per author.

We �nd the extreme case of comparing full and �rst-parent
histories an appropriate setting to study the impact of the mining
strategy on the results of mining and performance of the methods
based on these results. With the two extreme cases, we have the
highest chance of identifying e�ects not present in less extreme
settings. As this study is the �rst to explore such e�ects, we consider
this setting fruitful to highlight the directions for future work.

3 METHODOLOGY
3.1 Research Questions
We center our investigation around two research questions. First, we
set out to quantify the importance of careful handling of branches
during mining. In particular, we (i) explore the repository structure
to calculate numbers of commits reachable with and without con-
sidering branches and (ii) analyze di�erences on a lower level of
history of individual �les. Thus our �rst research question is:

RQ1. How does the branch handling strategy impact the results of
mining?
Having identi�ed the magnitude of the di�erence between min-

ing approaches that consider and do not consider branches, we

3https://www.sourcetreeapp.com/
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Figure 1: Construction of �le parent connections and resulting �le histories

investigate the impact of branch handling strategy on the perfor-
mance of algorithms relying on history of �les such as reviewer
recommendation, change recommendation, and defect prediction.
Thus, our second research question is:

RQ2. How important is the branch handling strategy for applica-
tions?

3.2 Mining Histories at Large Scale
Traversal of the commit tree can take a signi�cant amount of time:
in some repositories the tree contains hundreds of thousands of
commits. If this operation has to be repeated for many or even all
�les in the repository — which is often the case during mining the
repository for �le histories — it can take a lot of time for larger
repositories. Slowness of mining the �le histories is a limitation of
the storage model of Git, which does not link individual versions of
a �le to each other, and does not include indices of changes to indi-
vidual �les. To overcome this limitation, we devised an alternative
representation of changes in Git, aimed at fast retrieval of �le histo-
ries. We use a graph database engine4 to store a representation of
the commit graph. To keep the database compact, we only store the
commit nodes and records of a�ected �les, excluding their content.

In addition to the commit parent relationship, which is the basis
of the commit graph in Git, we introduce the concept of parent �le
versions. A parent version of a �le can be de�ned as a change to
the same �le in some other commit, which can be reached from
the current commit with a unique path over the commit parent
graph. In Figure 1 (center), the �le parent connections are repre-
sented by gray arrows. By processing the repository, we build the
graph of parent relationships between �le versions, and store it in
the graph database aside the commit graph. Once the �le parent
graph is built, retrieval of prior changes to the �le is as simple as
retrieving all transitive parents of the current version, which only

4Neo4J: https://neo4j.com/

requires traversing the �le parent graph, which is much faster than
traversing the whole repository thanks to direct links to parent
�le versions. For large-scale mining tasks this approach saves time:
after processing the repository and building the �le parent connec-
tions, it is possible to retrieve full modi�cation histories for several
thousand �les per second. Figure 1 (right) presents the resulting
histories from traversal of the �le parent graph.

3.3 Target Systems
We take a number of steps to ensure diversity in our target sys-
tems [51]. Our dataset consists of 260 repositories from Github,
selected in a strati�ed manner to include projects of di�erent scale.
Using GHTorrent [37], we randomly sample 100 repositories with
over 10,000 commits recorded in GHTorrent database for each, and
200 repositories with 1,000 to 10,000 commits. 40 of the 300 repos-
itories turned out not to be publicly available anymore; the rest
comprise our Github sample. Counts of commits as retrieved from
GHTorrent are not completely accurate, so actual distribution of
sizes of repositories in the sample is slighly more disperse. We have
attempted to download and mine all repositories from the Apache
open source ecosystem, of which we succeeded with 441 reposito-
ries of 532. The rest of the repositories were not available, empty,
or failed to process with our toolkit.

Finally, we include 395 and 309 repositories from Eclipse and
OpenStack respectively, which use Gerrit for code review. The
repositories in these two samples belong to the projects concerned
by the latest 100,000 reviews in each Gerrit instance, which we have
mined to evaluate the performance of a reviewer recommendation
algorithm (Section 5.1). We use smaller subsets of repositories for
parts of RQ2. For change recommendation and defect prediction,
we use samples of 10 repositories from each of Eclipse and Apache
ecosystems. These ecosystems were selected based on availability
of defect data (explained in Section 5.3.1). We use the same sample
for change recommendation (Section 5.2.1). To evaluate reviewer
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recommendation performance, we use the repositories of the 20
most active projects from each of Eclipse andOpenStack ecosystems
(Section 5.1). For the quantitative analysis of repository structure
and �le histories (RQ1), we use all 1,405 repositories from the four
samples. We report the entire list of repositories in our online
appendix [11].

4 RQ1: DIFFERENCE IN MINING RESULTS
Our �rst research question seeks to quantify the di�erences re-
sulting from the application of two di�erent mining approaches to
retrieval of the history of �les in Git.

4.1 Methodology
We devised a set of metrics that quantify the e�ect of strategy of
branch handling on the results of mining. Afterwards, we compared
two approaches in terms of these metrics, i.e., the �rst-parent one
(which extracts history only considering the �rst parent of each
commit when traversing the repository) and the full one (which
extracts all the commits by exploiting the approach described in
Section 2.3).

For each repository, we �rst compute descriptive measures of
its structure, such as number of commits that are reachable from
HEAD (the latest commit in the main branch), number of merge
commits (with more than one parent), number of �les in the repos-
itory, and number of unique contributors to the repository. We
use these metrics to compare the ecosystems between each other,
and to explore the variation in branching activity within and be-
tween them, which is important for mining: for example, di�erences
between the numbers of commits reachable depending on the tra-
versal strategy denote the importance of the strategy for mining:
if only the �rst parent is considered and traversed, some commits
are left out, while still contributing to the state of the repository at
HEAD. Number of merge commits can be used as a proxy measure
of branching activity in the repository.

Beyond repository-wide metrics, the way in which branches
are handled also impacts the calculation of histories of individual
�les: if only the main branch is considered, some changes from �le
history are omitted. This e�ect might impact various applications
of �le histories, ranging from identi�cation of contributors to a �le
to more complex scenarios such as reviewer recommendation.

To quantify this e�ect, we calculate histories of every �le in the
repository, using both the �rst parent and the full approaches to
retrieve all commits that contribute to a given version of a �le. For
every repository (all of which contain over 2 million �les in total),
we calculate repository-wide average length of the history of a
�le in its tree, when retrieved via �rst-parent and full method. We
compute the ratio of these averages, and fraction of �les for which
the two methods deliver di�erent histories among all �les in the
repository. In addition, we calculate numbers of contributors to
each �le for both methods of �le history mining, and compare their
repository-wide averages.

4.2 Results
4.2.1 Descriptive Metrics. To display the natural di�erences be-

tween the ecosystems, which are not associated with di�erent min-
ing strategies, we �rst present the comparison of the ecosystems

in terms of natural activity metrics, such as sizes of repositories
and number of contributors. The top two rows of Figure 2 present
a comparison of descriptive metrics between the repositories in the
four subject ecosystems. The numbers of commits in the reposi-
tories within each ecosystem greatly vary. A median number of
commits in a repository ranges from 172 for Github to 1,039 for
OpenStack. An average repository contains several hundred �les
in the �le tree at HEAD and this number varies in all ecosystems,
with a lower variation for OpenStack. Projects from GitHub are
typically developed by only a few authors – the median number of
contributors for a Github repository is 4. This value for OpenStack
is 61, with Eclipse and Apache falling in the middle.

For measures of branching activities, repositories from three of
the four ecosystems display moderate values: The majority of com-
mits in a typical repository from every ecosystem except OpenStack
is reachable from HEAD. OpenStack also stands out in numbers
of merge commits. In a median project, almost 30% of commits in
the repository that are reachable from HEAD are merges (Figure 2).
Along with higher branching activity, OpenStack repositories show
the highest di�erence between numbers of commits reachable from
HEAD via the �rst parent and via all parents.

Notably, repositories from Github are much more diverse in
terms of branching activity metrics. We attribute this diversity to
the fact that projects in other ecosystems are logically connected,
with possibly common engineering guidelines and intersecting
development teams. In addition, the branching structure of the
repositories is possibly impacted by the strategy of integrating the
pull requests, which are a common part of the work�ow at Github
and can be either merged or rebased.

4.2.2 File History Metrics. Table 1 presents the statistics on the
four ecosystems with regard to di�erence in �rst-parent and full �le
histories. Over the four ecosystems, 19% of �les display di�erence in
histories retrieved via �rst parent and full methods. Ecosystem-wide
fractions vary from 14% in Eclipse to 55% in OpenStack. 71% of the
repositories in our samples contain at least one �le with di�erence in
the history. Fraction of such repositories varies between ecosystems
from 56% in Eclipse to 97% in OpenStack. 81% of all commits and
72% of all �les belong to such repositories, which indicates that the
di�erence between �rst-parent and full histories is signi�cant in
most of the repositories and cannot be ignored as a rare e�ect.

Distributions of the metrics related to di�erence in the results of
mining �le histories are presented in the bottom row of Figure 2.
One metric that indicates the importance of the strategy of �le
history mining for a given repository is number of �les for which
histories retrieved via the �rst parent and via the full traversal have
di�erent lengths. Such �les exist in 305 of 441 repositories (69%)
from Apache, 173 out of 260 (67%) from the Github, 220 of 395 (56%)
in Eclipse, and in 301 of 309 (97%) OpenStack repositories.

Similarly to the merge activity metrics, fraction of �les with
di�erence in history greatly varies within every ecosystem. Median
proportion of such �les is 8% in Apache and Github, under 1% in
Eclipse, and 46% in OpenStack repositories. Distribution of ratio of
the length of the two histories across repositories that contain �les
with the di�erence in histories (naturally, this metric is only de�ned
for such projects), displays a similar behaviour across ecosystems to
fraction of �les with the di�erence in history. This ratio for Eclipse
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Table 1: Overview of the target ecosystems

Ecosystem
Projects Commits Files

total with 
difference total in projects with 

difference total with difference in projects with 
difference

Github 260 173 (67%) 872,833 257,156 (29%) 322,783 85,170 (26%)  225,861 (70%)
Apache 441 305 (69%) 998,910 938,032 (93%) 861,196 136,692 (16%) 525,997 (61%)
OpenStack 309 301 (97%) 1,317,165 1,317,004 (100%) 87,382 47,634 (55%) 87,166 (100%)
Eclipse 395 220 (56%) 1,000,997 883,318 (88%) 874,044 127,833 (14%) 712,315 (82%)
Total 1,405 999 (71%) 4,189,905 3,395,510 (81%) 2,145,405 397,329 (19%) 1,551,339 (72%)
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Figure 2: Comparison of descriptive metrics between repositories in di�erent ecosystems

repositories is the highest of the four (the histories are the most
similar; median ratio is 0.997) and the lowest for OpenStack (0.63).
If we omit the �les with identical �rst-parent and full histories
and only consider the �les with the di�erence, an ecosystem-wide
median value for average ratio of history lengths in a repository
ranges from 0.54 to 0.82 for OpenStack and Eclipse, respectively.

The values for the aforementioned metrics indicate that—in most
of the repositories from all four ecosystems—the �rst-parent strat-
egy leaves out a signi�cant number of changes. The proportion of
�les a�ected by the di�erence and the scale of this di�erence are
the lowest for Eclipse and highest for OpenStack.

One straightforward practical application of �le histories is re-
trieval of contributors to a �le. Developer tools with code viewing
features, such as Github, display contributors to the current �le in
the user interface of �le content display. Figure 2 displays the ratios
of counts of version control user records in �rst-parent and full
histories. While the ratio is close to 1 for most of the repositories

in Eclipse, Github and Apache, there are quite a few repositories
with large di�erence in each of these ecosystems. For most of the
repositories in OpenStack, retrieval of histories via the �rst parent
of the commit leaves out over 25% of contributor records (median
value of the ratio is 0.74). Only considering the �les with di�erent
histories naturally leads to an even stronger e�ect.

4.2.3 Summary. The analysis of the results of mining across
over 1,400 repositories in the four subject ecosystems reveals that—
in most of the considered repositories—the two strategies of mining
�le histories deliver di�erent results (Figure 2, Table 1). The size
of the di�erence for a typical repository varies across the four
ecosystems and is the lowest for Eclipse and the highest for Open-
Stack. The size of the e�ect aligns with the proportion of the merge
commits in repositories and reachability of commits (Figure 2). The
di�erence between the histories does not only impact their quantita-
tive metrics, but also distorts the observed numbers of contributors
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to a �le. We explore the impact of the mining technique on the more
complex repository analysis techniques relying of �le histories in
the next research question (RQ2, Section 5).

5 RQ2: IMPORTANCE FOR APPLICATIONS
To evaluate importance of the mining approach for practice, we
compare the performance of three prevalent techniques based on
histories of changes: (i) recommendation of code reviewers [22], (ii)
change recommendation [68], and (iii) defect prediction [41].

It is important to note that, while we compare the numbers of
performance of the techniques, we do not perform statistical tests
to assess the signi�cance of the di�erence, because (i) we are merely
demonstrating the existence of the di�erence for individual projects
from our samples, rather than trying to generalize the results for
a broader population of projects, and (ii) statistical tests, such as
Mann-Whitney U, which are commonly used for this purpose, are
not applicable in our case, because measures of performance of
conceptually similar algorithms on related data from the same
projects cannot be considered independent samples [50].

5.1 Code Reviewer Recommendation
5.1.1 Methodology. Recommendation of reviewers for code re-

view has the goal of �nding the most quali�ed reviewer for a new
code change committed on a repository [22]. Such recommendation
tools usually mine the change history information to identify the
developer that is more expert on the piece of code impacted by
the change under review. Thus, it represents a prominent example
of usage of �le histories to assist developers in routine tasks. In
the last few years the reviewer recommendation algorithms have
been adopted by industrial code review tools, such as Github [7],
Gerrit [4] and Upsource [15].

We focus on two open source ecosystems that use Gerrit for
code review — Eclipse [2] and OpenStack [12]. For each of the
two Gerrit instances [3, 13], we extract the 100,000 most recent
code reviews. We choose this number to have a su�ciently large
dataset, which would, however, not include all of the reviews in the
corresponding instances, but only two sets, similar in size, of the
most recent reviews from each instance. We assess the impact of
the �le history retrieval method on accuracy of recommendations
of code reviewers based on the history of changes. We perform the
evaluation to �nd out whether the accuracy of recommendations
changes depending on method of �le history retrieval, but not to
achieve maximum possible accuracy. Thus, we resort to a trivial
reviewer recommendation algorithm, based on counts of develop-
ers’ prior contributions to the �les under review. We evaluate the
recommendations by comparing a list of recommendations with
actual reviewers of a changeset, as recorded in Gerrit. To assess the
accuracy of recommendations, we use two commonwise metrics:
Mean Reciprocal Rank (MRR) and top-k precision [66].

5.1.2 Results. Table 2 presents the results of evaluation of re-
viewer recommendation algorithm based on authors of past changes
to �les under review. We compare the accuracy of the algorithm
between the two variations of input data: �rst-parent and full �le
histories. For each of the two ecosystems — Eclipse and OpenStack
— we compare the accuracy numbers for 20 projects in each ecosys-
tem. The selected projects are the most represented among 100,000

latest code reviews in the corresponding Gerrit instance. We re-
port values of mean reciprocal rank and top-k accuracy for k in
{1, 2, 3, 5, 10} (average for all reviews in the project) for the recom-
mendation lists based on both �rst-parent and full histories of �les
under review, and explore the di�erence between these values. To
keep the table compact, we only report the 5 most active projects
from each ecosystem individually, and aggregated values for the top
5 and top 20 projects. To illustrate the scale of di�erence between
�le histories, we also report average counts of commits in the union
of histories of �les under review, for both methods of retrieval of
�le histories, and the ratio of these numbers for the two methods.

For the Eclipse ecosystem, the di�erence in recommendation
accuracy is subtle: MRR and all 5 top-k precision values only vary
very slightly between �rst-parent and full histories consistently
across all projects. For the OpenStack ecosystem the di�erence is
slightly more pronounced. While MRR values only di�er slightly,
top-k precision values di�er increasingly for higher values of k .
This di�erence indicates that the full histories of �les may include
changes, made by future reviewers of a �le, that are not present
in the �rst-parent histories. The increase in the size of the e�ect
with the increase of k suggests that authors of such changes are
typically not the main contributors of the �le, as they end up around
k-th position in the list of past contributors sorted by numbers of
contributions, thus starting to a�ect the top-k precision value for
the corresponding k and higher.

The di�erence in the size of the e�ect betwen the two ecosystems
can be explained by the fact that the di�erence between the full
and �rst-parent histories is much higher for OpenStack reposito-
ries than for Eclipse. In OpenStack, the full histories of commits
for all �les under review, in union, contain on average 5.26 times
as many changes as the �rst-parent histories. In Eclipse, the aver-
age di�erence between sizes of histories is under 20%. Such a low
di�erence is unlikely to cause a large deviation of the two sorted
contributor lists, and is thus not critical for the accuracy of reviewer
recommendation based on history of changes. A large di�erence in
OpenStack, however, noticeably impacts the accuracy of reviewer
recommendation.

5.2 Change Recommendation
5.2.1 Methodology. Another example of usage of historical data

to improve the user experience of development process is recom-
mendation of changes, based on mining of association rules for
changes to individual �les. A practical application for this technique
was described by Zimmermann et al. [68]: in particular, given a new
code change as input, their technique suggests related changes that
the developer might want to apply based on the �les that frequently
change with the modi�ed �le. We perform an experiment to assess
the e�ect of using full histories of changes to a �le, compared to
using the �rst-parent histories.

The original design by Zimmermann [68] uses a set of changes
from version control to infer �le association rules. To apply the
approach to our area of focus — di�erence in results of mining of
individual �les — we adapt the design of the original tool. We use
two di�erent approaches to infer the association rules from past
changes, and evaluate their performance in predicting a change of
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Table 2: Results of reviewer recommendation evaluation on projects from Eclipse and OpenStack

MRR Top 1 precision Top 2 precision Top 3 precision Top 5 precision Top 10 precision Changes per review

Project (OpenStack) Reviews Reviews 
w/ diff

first 
parent full delta first 

parent full delta first 
parent full delta first 

parent full delta first 
parent full delta first 

parent full delta first 
parent full ratio

openstack/tripleo-heat-templates 2,588 2,477 0.16 0.19 0.03 0.13 0.10 -0.02 0.17 0.18 0.01 0.19 0.23 0.03 0.21 0.30 0.09 0.22 0.38 0.16 7.75 76.46 9.87

openstack/releases 2,107 1,990 0.16 0.21 0.05 0.10 0.10 0.00 0.19 0.28 0.09 0.22 0.32 0.11 0.24 0.35 0.11 0.24 0.36 0.12 9.81 26.56 2.71

openstack/cinder 2,073 2,049 0.02 0.02 0.00 0.01 0.01 0.00 0.02 0.02 0.00 0.02 0.02 0.00 0.02 0.03 0.01 0.03 0.04 0.02 17.41 157.62 9.05

openstack/requirements 1,786 1,771 0.05 0.07 0.03 0.01 0.01 0.01 0.02 0.02 0.00 0.02 0.04 0.02 0.08 0.12 0.04 0.14 0.29 0.15 255.40 1,534.32 6.01

openstack-infra/zuul 1,367 1,329 0.10 0.13 0.03 0.05 0.04 -0.01 0.08 0.10 0.02 0.11 0.14 0.03 0.15 0.23 0.08 0.24 0.35 0.12 65.85 178.63 2.71

Total (OpenStack top 5) 9,921 9,616 0.10 0.13 0.03 0.07 0.06 -0.01 0.10 0.13 0.03 0.12 0.16 0.04 0.15 0.21 0.06 0.17 0.29 0.11 62.79 359.34 5.72

Total (OpenStack top 20) 25,179 24,297 0.13 0.15 0.02 0.09 0.08 -0.01 0.14 0.15 0.01 0.16 0.19 0.03 0.19 0.24 0.05 0.21 0.31 0.10 40.05 210.50 5.26

Project (Eclipse) Reviews Reviews 
w/ diff

first 
parent full delta first 

parent full delta first 
parent full delta first 

parent full delta first 
parent full delta first 

parent full delta first 
parent full ratio

papyrus/org.eclipse.papyrus 4,884 3,775 0.26 0.26 0.00 0.18 0.18 0.00 0.27 0.26 0.00 0.31 0.31 0.00 0.35 0.36 0.00 0.41 0.42 0.02 48.10 68.46 1.42

jgit/jgit 4,842 4,197 0.42 0.42 0.01 0.30 0.31 0.00 0.43 0.43 0.00 0.50 0.51 0.00 0.58 0.59 0.01 0.64 0.67 0.03 44.74 78.38 1.75

linuxtools/org.eclipse.linuxtools 4,616 2,910 0.42 0.41 -0.01 0.29 0.28 -0.02 0.46 0.44 -0.02 0.55 0.53 -0.02 0.59 0.59 0.00 0.62 0.62 0.01 42.46 56.11 1.32

egit/egit 4,587 4,028 0.35 0.36 0.01 0.23 0.23 -0.01 0.33 0.33 0.00 0.40 0.41 0.01 0.51 0.56 0.05 0.64 0.67 0.03 98.74 140.66 1.42

platform/eclipse.platform.ui 4,083 2,486 0.26 0.23 -0.03 0.15 0.12 -0.03 0.25 0.21 -0.04 0.32 0.27 -0.04 0.40 0.36 -0.04 0.50 0.48 -0.02 117.53 145.60 1.24

Total (Eclipse top 5) 23,012 17,396 0.34 0.34 0.00 0.24 0.22 -0.01 0.35 0.43 -0.01 0.42 0.41 -0.01 0.49 0.50 0.01 0.56 0.57 0.01 68.67 96.15 1.40

Total (Eclipse top 20) 55,620 36,795 0.37 0.37 0.00 0.25 0.24 -0.01 0.38 0.37 0.00 0.46 0.46 0.00 0.55 0.55 0.01 0.62 0.63 0.01 103.37 122.57 1.19

Total (Eclipse top 20 + 
OpenStack top 20) 80,799 61,092 0.30 0.30 0.01 0.20 0.19 -0.01 0.30 0.30 0.00 0.37 0.37 0.01 0.43 0.45 0.02 0.49 0.53 0.04 83.63 149.97 2.45

a given �le in the commit. The common part of the two algorithms
is their context and input data.

Below we use the notation F 2 C to denote that the commit C
a�ects the �le F , i.e., the �le is modi�ed in it. Both algorithms try
to predict the change to the �le Fcurrent in the current commit
Ccurrent .

In the �rst algorithm (“single-�le” ), we infer the association rules
from the commits that a�ected this �le in the past: {C : Ci a�ects
Fcurrent }.

In the second algorithm (“other-�les” ) we infer the rules from
the commits that a�ected every of the other �les in the commit C:
{C : Ci a�ects Fk , Fk 2 {F : Fi 2 Ccurrent } \ {Fcurrent }}

We evaluate both algorithms and compare their performance
depending on the type of �le histories in use: �rst-parent or full.
Intuitively, a full history contains more information about past
changes, which allows one to infer more association rules, some
of which are more likely to match the current change. However,
since we are interested in di�erence between the two methods of
�le history mining in terms of their capability to provide informa-
tion to infer the association rules from past changes (quantitative
di�erence is explored by RQ1), we make adjustments to account
for the di�erence in sizes of the two histories: (1) We only include
the predictions where the histories are di�erent (otherwise they
perform equally); (2) We trim the full history to the size of the �rst-
parent history, taking the most recent commits into account (to
infer rules from the same number of commits); (3) We sort the rules
by support and trim the larger ruleset to match size with smaller
(to account for the possible di�erence in the number of rules).

In addition, to bring the algorithm closer to a practical approach,
we only generate the predictions when the following (empirically
derived) criteria are met: (i) We do not consider large commits with
more than 10 changes when infering the rules (they rarely represent
meaningful changes); (ii) We only execute the algorithm when the

smaller of two histories contains at least 5 commits (otherwise
the history is too trivial to learn meaningful rules from); (iii) We
use at most 100 most recent commits from the history to infer
the rules (to capture the current state of logical coupling between
�les); (iv) We use at most 10 rules with the highest support values
(recommendation lists are �nite and small in practical contexts). We
use an open source implementation [8] of the Apriori algorithm [17]
to infer the association rules. A formal de�nition of the concept of
an association rule is available in literature [68].

Imitating a real-life context of recommendation of changes, we
derive a recommendation set from the set of rules as a union of
all one-item sets of heads of the rules, bodies of which are fully
contained among the other �les changed in the commit C .

We use a random sample of 10 projects from each of Apache and
Eclipse ecosystems for evaluation. We select these projects to align
the sample with the sample used for defect prediction (Section 5.3.1),
for which the choice of target systems is restricted by the issue
tracker in use.

5.2.2 Results. Table 3 presents the results of evaluation of change
recommendation. An “event” corresponds to a single case when
association rules have been successfully generated using both �rst-
parent and full histories. In some events, none of the rules match the
set of changes in the commit, so no recommendations can be pro-
duced. Rate of such events is presented in the last column of Table 3.
The setup and the algoritms are described in detail in Section 5.2.1.
In the context of this study, we are interested in comparing the
performance of full and �rst-parent histories as the input data for
each of the two algorithms.

The “other �les” algorithm, which uses histories of the other
�les in the commit to produce the association rules, produces more
events and generates more recommendations on sampled reposi-
tories from both Apache and Eclipse. However, only under 20% of
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Table 3: Comparison of performancemetrics for change rec-
ommendation, by mining approach and ecosystem

Apache

Algorithm History 
type

Events 
count

Recommendations 
(average)

Rules 
(average)

Success 
rate

Failure 
rate

No 
prediction 

rate

Single file
Full 8780 0.908 8.848 0.496 0.029 0.474
First parent 8780 0.858 8.848 0.474 0.031 0.496

Other files
Full 19072 1.565 8.003 0.184 0.528 0.288
First parent 19072 1.485 8.003 0.170 0.527 0.303

Eclipse 

Algorithm History 
type

Events 
count

Recommendations 
(average)

Rules 
(average)

Success 
rate

Failure 
rate

No 
prediction 

rate

Single file
Full 2721 0.772 7.922 0.491 0.016 0.493
First parent 2721 0.729 7.922 0.483 0.016 0.501

Other files
Full 6661 1.324 7.540 0.163 0.514 0.323
First parent 6661 1.299 7.540 0.152 0.526 0.322

�1

Table 4: Comparison of performance metrics for defect pre-
diction, by mining approach and ecosystem

Precision Recall F-Measure AUC-ROC

Project (Apache) % 
Defects

first 
parent full delta first 

parent full delta first 
parent full delta first 

parent full delta

calcite 42 0.57 0.57 0.00 0.65 0.65 0.00 0.61 0.61 0.00 0.66 0.67 0.01
falcon 55 0.61 0.63 0.02 0.63 0.63 0.00 0.62 0.63 0.01 0.63 0.74 0.11
james 41 0.48 0.49 0.01 0.55 0.58 0.03 0.51 0.58 0.07 0.55 0.60 0.00
lens 63 0.64 0.68 0.04 0.69 0.69 0.00 0.66 0.68 0.02 0.72 0.76 0.02
lucy-clownfish 32 0.59 0.59 0.00 0.61 0.65 0.04 0.60 0.62 0.02 0.67 0.67 0.03
madlib 35 0.61 0.62 0.01 0.67 0.67 0.00 0.64 0.64 0.00 0.62 0.71 0.02
predictionio 44 0.37 0.44 0.07 0.48 0.56 0.08 0.42 0.49 0.07 0.51 0.59 0.02
qpid-proton 37 0.55 0.55 0.00 0.61 0.61 0.00 0.58 0.58 0.00 0.59 0.61 0.02
ranger 40 0.66 0.67 0.01 0.69 0.73 0.04 0.67 0.70 0.03 0.66 0.67 0.02
reef 33 0.60 0.61 0.01 0.62 0.62 0.00 0.61 0.61 0.00 0.72 0.74 0.01
Overall (Apache) - 0.58 0.60 0.02 0.64 0.67 0.03 0.62 0.65 0.03 0.64 0.66 0.02

Project (Eclipse) % 
Defects

first 
parent full delta first 

parent full delta first 
parent full delta first 

parent full delta

acceleo 39 0.64 0.64 0.00 0.59 0.63 0.04 0.61 0.63 0.02 0.67 0.69 0.02
chemclipse 33 0.62 0.64 0.02 0.61 0.61 0.00 0.61 0.62 0.01 0.59 0.59 0.00
efxclipse 46 0.55 0.55 0.00 0.55 0.57 0.02 0.55 0.56 0.01 0.62 0.65 0.03
epp 53 0.72 0.74 0.02 0.57 0.62 0.05 0.64 0.67 0.03 0.67 0.68 0.01
hudson 44 0.61 0.64 0.03 0.73 0.73 0.00 0.66 0.68 0.02 0.63 0.68 0.05
platform.releng 32 0.66 0.66 0.00 0.58 0.58 0.00 0.62 0.62 0.00 0.64 0.64 0.00
recommenders 18 0.65 0.65 0.00 0.55 0.59 0.04 0.60 0.62 0.02 0.55 0.60 0.05
swtbot 24 0.60 0.60 0.00 0.58 0.59 0.01 0.60 0.60 0.00 0.60 0.60 0.00
tcf 31 0.68 0.69 0.01 0.72 0.72 0.00 0.70 0.70 0.00 0.70 0.75 0.05
downloads 35 0.73 0.76 0.03 0.55 0.58 0.03 0.63 0.66 0.03 0.69 0.74 0.05
Overall (Eclipse) - 0.66 0.69 0.03 0.59 0.63 0.04 0.63 0.66 0.03 0.64 0.67 0.03

Overall (Apache + 
Eclipse) - 0.65 0.67 0.02 0.61 0.61 0.00 0.63 0.66 0.03 0.61 0.65 0.04

�1

these recommendations are successful. The “single �le” algorithm,
using rules inferred from the history of a single �le, generates
less recommendations, of which around a half are successful. The
full histories perform slightly better as the input data for both al-
gorithms in both ecosystems: depending on the ecosystem and
algorithm, they yield 5 – 8% more recommendations, which are 2 –
8% more likely to be successful (i.e., to match an actual change).

5.3 Defect Prediction
5.3.1 Methodology. The last application aims at recommending

developers the �les that are more likely to contain defects [39].
In our study, we take into account the Basic Code Change Model

(BCCM) prediction model devised by Hassan [41], which is based

on the entropy of changes applied by developers in a certain time
window and is computed exploiting the concept of Shannon entropy
[55]. We consider the model by Hassan [41] rather than more recent
ones (e.g., [36]) since (i) we are only interested in models relying on
change history information, thus we cannot consider models based
on product metrics [24] and (ii) BCCM performs similarly to others
proposed in literature, thus still being representative of the �eld
[39]. Our conjecture is that the quanti�cation of the entropy may
be more precise when considering the full history of �les rather
than the single-parent case.

We perform a replication of the study by Hassan [41], consid-
ering the BCCM. It splits the change history of a software project
into three-month time periods, and adopts a three-month sliding
window to train and test a Logistic Regression classi�er (that is, the
one adopted in the original study by Hassan [41]). In other words,
starting from the beginning of the history, it computes the entropy
of changes on the �les available in a time window and uses such
data to train a classi�er that predicts the defectiveness of �les in
the subsequent time window. The process is then repeated until the
end of the history. Given the nature of the model, we evaluate its
performance in the two scenarios, i.e., single-parent vs full, by con-
sidering the mean F-Measure and AUC-ROC [21] achieved when
run on each time window.

In this case, we run the experiment over 20 randomly sampled
systems belonging to the Apache and Eclipse ecosystems considered
in the study (their names are reported in the online appendix [11]).
We do so because, to extract actual defects composing the ground
truth on which compare the results of the model against, we rely on
a issue tracker mining tool based on BugZilla [1], and therefore we
limit this study to the ecosystems that use it. Our ground truth is
represented by post-release defects marked as solved by developers
on the issue tracker. As such, we consider as defective all those
�les that have encountered a problem in a certain time window,
according to the timestamp of the bug report.

5.3.2 Results. Table 4 reports the results achieved when con-
sidering the problem of predicting defects using the BCCM model
de�ned by Hassan [41] in case of single-parent or full history con-
�guration. Overall, the delta between the two approaches is not
large for any of the evaluation metrics considered. For instance, the
F-Measure is only 3% higher in both Apache and Eclipse, respec-
tively. Thus, in a �rst glance we can claim that considering branches
does not improve the defect prediction performance. Nevertheless,
�ner observations reveal two aspects that it is worth to highlight. In
the �rst place, the model built using the single-parent strategy has
always performance equal or lower than the one that considers the
full history: thus, taking into account the full set of changes is not
detrimental in the case of defect prediction. Conversely, the full his-
tory approach provides bene�ts in 65% and 80% of the cases when
considering F-Measure and AUC-ROC, respectively, meaning that
defect prediction performance can generally gain when considering
all the changes rather than a subset of them. It is interesting to note
the di�erences are higher when considering the AUC-ROC, i.e., the
evaluation metric suggested by previous work [30, 33] to evaluate
defect prediction models: speci�cally, it is up to 11% higher (on the
repository of the Apache Falcon project), showing that considering
the full history of �les can provide strong improvements. Therefore,
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based on our �ndings, we can �nally claim that taking the whole
history into account when building history-based defect prediction
models might provide important bene�ts in terms of performance.

6 LIMITATIONS AND THREATS TO VALIDITY
A number of limitations a�ect the results of our study, and pose
potential threats to its validity.

(1) When designing the experiments to compare performance,
we tried to follow the original approaches as closely as pos-
sible, but it was not always possible completely (e.g. with
change prediction), thus results on the original approaches
may di�er.

(2) While we used a diverse population of projects from four
independent ecosystems, it is not clear whether and how our
results can be generalized further.

(3) Our analysis included an extensive technical work, although
we tested it carefully and under several scenarios, we cannot
guarantee that code is bug-free. However, we make the code
available in the online appendix [11].

7 DISCUSSION AND IMPLICATIONS
7.1 Discussion
Our results highlight several important aspects regarding the choice
of the mining strategy.
The technical details of mining can signi�cantly impact the
quantitative properties of the retrieved data. In case of our
study, such properties are the sizes of �le histories and numbers of
contributors: In over 2 million �les from our composite sample of
four ecosystems, the resulting histories di�er for 19% of �les.
The size of the di�erence varies across projects and ecosys-
tems. In OpenStack projects, the �rst-parent and full histories are
di�erent for 55% of �les, while in Eclipse projects we observe the
di�erence for only 14% of �les.
The size of the di�erence is associated with other properties
of a repository. In our case, the ecosystem with the highest dif-
ference (i.e., OpenStack) also demonstrates the highest merging
activity, most of which can be attributed to code review: after a
successful code review in OpenStack, changes are merged back
into the trunk by a bot. Thus, high proportion of merges and their
impact on �le histories can be considered a consequence of their
development work�ow – namely, code review. Notably, while a
similar work�ow with code reviews performed with Gerrit is also
present in Eclipse, this ecosystem displays the lowest degree of
di�erence: changes in Eclipse are typically rebased, but not merged,
after code review. The impact of this particular factor on the results
of repository mining deserves a deeper analysis in future work.
The di�erence in results of mining can in�uence the perfor-
mance of techniques based on �le histories: reviewer recom-
mendation, change recommendation, and defect prediction.
For all of the tested approaches, full histories, when used as input
data, perform at least not worse than �rst-parent histories, in most
cases yielding a slight increase in performance.
Some applications aremore sensitive to quality of input data
than others. In our case, for reviewer recommendation in Open-
Stack full histories provide better accuracy, especially when longer

recommendation lists are evaluated (top-5 and top-10 accuracy).
OpenStack also happens to be the ecosystem where the di�erence
between the �rst-parent and full histories is the highest. At the
same time, Eclipse projects show the smallest di�erence between
the �rst-parent and full histories among all four target ecosystems,
and this small di�erence appears insu�cient to in�uence accuracy
of reviewer recommendation.

7.2 Implications
Considering the points above, we see several important implications
of our results.

(1) Software engineering researchers should be aware of
the possible impact of themining technique on the re-
sults.Our study demonstrates that omitting changes outside
the main branch during mining of �le histories signi�cantly
impacts the results of mining, which often leads to a slight
decrease in performance of methods that use �le histories
as input data.

(2) The choice of the mining technique should account
for the context of the mining task.While using full �le
histories ensures a better performance, in most cases the dif-
ference is only marginal. In many contexts, a small increase
in performance may not justify dedicating the extra e�ort to
more precise mining. While we suggest using precise min-
ing methods where possible—and provide a tool for doing
that—in many contexts it is not essential.

(3) Researchers should report the technical details ofmin-
ing.We suggest that techniques of repository mining should
be described in more detail by authors of MSR studies, as
not providing details complicates reproducibility of stud-
ies, and oversimplifying the mining potentially undermines
performance of methods and validity of studies.

8 CONCLUSION
With the study presented in this paper, we make the following main
contributions:

• The �rst demonstration of the importance of careful handling
of merge commits and changes from outside the main branch
for calculation of �le histories;

• Analysis of impact of a strategy of mining �le histories on
performance of three techniques relying on them as input
data;

• A tool for e�cient mining of precise �le histories in Git [11].
Our results cover the underrepresented topic of technical details

of mining the repositories for �le histories, and open opportunities
for deeper analysis of associated factors, such as topology of change
histories. We hope that this study will inspire other researchers
in MSR to apply a more detailed approach to mining, where it is
feasible, and to report the technical details of mining to ensure
clarity and reproducibility of the studies.
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